The slope of the line is
(change in ' y ' between the ends) / (change in ' x ' between the ends)
Slope = (630g - 0) / (70 cm^3 - 0)
Slope = (630 / 70) g/cm^3
<em>Slope = 9.0 g/cm^3</em>
Jumping on a trampoline is a classic example of conservation of energy, from potential into kinetic. It also shows Hooke's laws and the spring constant. Furthermore, it verifies and illustrates each of Newton's three laws of motion.
<u>Explanation</u>
When we jump on a trampoline, our body has kinetic energy that changes over time. Our kinetic energy is greatest, just before we hit the trampoline on the way down and when you leave the trampoline surface on the way up. Our kinetic energy is 0 when you reach the height of your jump and begin to descend and when are on the trampoline, about to propel upwards.
Potential energy changes along with kinetic energy. At any time, your total energy is equal to your potential energy plus your kinetic energy. As we go up, the kinetic energy converts into potential energy.
Hooke's law is another form of potential energy. Just as the trampoline is about to propel us up, your kinetic energy is 0 but your potential energy is maximized, even though we are at a minimum height. This is because our potential energy is related to the spring constant and Hooke's Law.
Answer:
i can't see the picture, it is blocked off, can you write down your question?
Explanation:
The gravitational force will be one quarter.
The gravitational force between two objects is given by the formula
F=GMm/r^2
here, r is the distance between the objects.
Thus the gravitational force is inversely proportional to the square of the distance between the objects, Therefore if the distance between two objects is doubled the force will be one quarter.
They are dynamic, with winds and waves constantly reworking and moving
the barrier island sand.
Changes in sea level also affect these islands.
Most scientists agree that sea level has been gradually rising over the
last thousand years, and this rise could be accelerating today due to global warming.
Rising sea level causes existing islands to migrate shoreward.