Force applied on the car due to engine is given as
towards right
Also there is a force on the car towards left due to air drag
towards left
now the net force on the car will be given as

now we can say that since the two forces are here opposite in direction so here the vector sum of two forces will be the algebraic difference of the two forces.
So we can say



So here net force on the car will be 150 N towards right and hence it will accelerate due to same force.
Answer:
Distance, d = 778.05 m
Explanation:
Given that,
Force acting on the car, F = 981 N
Mass of the car, m = 1550 kg
Initial speed of the car, v = 25 mi/h = 11.17 m/s
We need to find the distance covered by car if the force continues to be applied to the car. Firstly, lets find the acceleration of the car:

Let d is the distance covered by car. Using second equation of motion as :

So, the car will cover a distance of 778.05 meters.
Newton's first law of motion says something like "An object remains
in constant, uniform motion until acted on by an external force".
Constant uniform motion means no change in speed or direction.
If an object changes from rest to motion, that's definitely a change
of speed. So it doesn't remain in the state of constant uniform
motion (none) that it had when it was at rest, and that tells us
that an external force must have acted on it.
This topic is actually quite controversial, but the answer in this case would be C.
Just some food for thought, the 2nd law of thermodynamics entropy of the universe is always increasing, but that doesn't necessarily mean that earth's entropy has to. As long as the net change in entropy of the universe is increasing it doesn't matter if one planet is decreasing a nominal amount. Next, Earth as said is not a closed system and you could argue that the sunlight and energy from the sun is increasing the total energy within the system that is earth meaning that it is increasing in entropy. Next, if you consider increasing entropy as an increase in the number of possible permutations that the universe or parts of the universe can take, then it is completely possible that an ordered planet and life is possible, although rare. This theory explains why there are so many life forms and why entropy is actually increasing when divergent evolution occurs.
Answer:
The weight of an object at the Earth's South Pole is slightly more than its weight at the Equator because the polar radius of the Earth is slightly less than the equatorial radius. Though the mass of an object remains constant, its weight varies according to its location.
Explanation: