Answer:
A. The particles will begin to move enough
that they slide past each other.
Explanation:
When the plastic cup is heated, the Kinetic energy of its particles starts increasing. As the temperature rises, the kinetic energy keeps increasing. With the increase of K.E, the particles start moving faster and faster. When the temperature finally reaches the melting point, the K.E of the molecules is enough to break the bonds and slide past each other.
As the wave length increases the energy of the wave decreases as the equation that relates the c=λυ λ is the wave length and υ is the frequency (which is directly proportional to the energy).
In the wave length spectrum, x-ray has a shorter wave length, meaning that
x-ray has a higher energy than ultraviolet waves.
Hope this helps.
Answer : 
Explanation :
It is given that,
Mass of the engine, m = 30 kg
Thrust is equivalent to the force acting perpendicularly and it is F = 300 N
According to Newton's second law of motion :

a is the acceleration of the engine.



So, the acceleration of the engine is
.
Hence, this is the required solution.
Answer:
W=76.55 miles.metric tons
Explanation:
Given that
Weight on the earth = 12 tons
So weight on the moon =12/6 = 2 tons
( because at moon g will become g/6)
As we know that

Here x= 1100 miles
F 2 tons

So

We know that
Work = F. dx


![W=-2.4\times 10^6\left[\dfrac{1}{x}\right]_{1100}^{1140}](https://tex.z-dn.net/?f=W%3D-2.4%5Ctimes%2010%5E6%5Cleft%5B%5Cdfrac%7B1%7D%7Bx%7D%5Cright%5D_%7B1100%7D%5E%7B1140%7D)
![W=-2.4\times 10^6\left[\dfrac{1}{1140}-\dfrac{1}{1100}\right]](https://tex.z-dn.net/?f=W%3D-2.4%5Ctimes%2010%5E6%5Cleft%5B%5Cdfrac%7B1%7D%7B1140%7D-%5Cdfrac%7B1%7D%7B1100%7D%5Cright%5D)
W=76.55 miles.metric tons
Answer:
0.37sec
Explanation:
Period of oscillation of a simple pendulum of length L is:
T
=
2
π
×
√
(L
/g)
L=length of string 0.54m
g=acceleration due to gravity
T-period
T = 2 x 3.14 x √[0.54/9.8]
T = 1.47sec
An oscillating pendulum, or anything else in nature that involves "simple harmonic" (sinusoidal) motion, spends 1/4 of its period going from zero speed to maximum speed, and another 1/4 going from maximum speed to zero speed again, etc. After four quarter-periods it is back where it started.
The ball will first have V(max) at T/4,
=>V(max) = 1.47/4 = 0.37 sec