Answer:
T = 0.607 seconds
Explanation:
Given:
Mass, M = 1.50 × 10⁻² kg
Radius, R = 5.50 × 10⁻² m
Now,
the time period in terms of moment of inertia is given as:
.....................1
where, T is the time period
g is the acceleration due to gravity
I is the moment of inertia
Now,
Moment of inertia, I is given as:

on substituting the moment of inertia in the equation 1, we get

or

on substituting the valeus, we get

or
T = 0.607 seconds
Hence, the time period is 0.607 seconds
Explanation:
D = M/V
We rearrange this equation to get V = M/D
So 14 g/7 g/mL,
the grams cancel out, and we're left with 2 mL.
D is the answer.
0.118 m is the distance between the two protons.
Mass of proton = 1.6726 × 10⁻²⁷ kg
Weight of proton= 1.6726 × 10⁻²⁷ x 9.81 N
= 1.6408 × 10⁻²⁶ N
Charge of proton = 1.602 × 10⁻²⁹ C
The force between two protons = kq²/r² where, K is a proportionality
constant, q is a charge of proton and
r is the distance between two protons.
= 9 × 10⁹ × (1.602×10⁻¹⁹)²/r²
To calculate distance :
Weight of proton= Force between protons
⇒ 1.6408 × 10⁻²⁶ N = 9 × 10⁹ × (1.602×10⁻¹⁹)²/r²
⇒ r = 0.118m
Therefore, 0.118 m is the distance between the two protons.
Learn more about electrostatic force here:
brainly.com/question/18108470
#SPJ4
final velocity = 0
acceleration = - 10 m/ s 2
distance. = 20 m
u = ?
v^2 - u ^2 = 2 a s
0^2 - u^ 2 = 2 * -10 * 20
-u^2 = -400
u = √ 400
u = 20m / s