Incomplete question as number of moles and length is missing.So I have assumed 3 moles and length of 0.300 m.So the complete question is here:
Three moles of an ideal gas are in a rigid cubical box with sides of length 0.300 m.What is the force that the gas exerts on each of the six sides of the box when the gas temperature is 20.0∘C?
Answer:
The Force act on each side is 2.43×10⁴N
Explanation:
Given data
n=3 mol
L=0.3 m
Temperature=20.0°C=293 K
To find
Force F
Solution
To get force act on each side it would employ by
F=P.A
Where P is pressure
A is Area
First we need to find pressure by applying ideal gas law
So

So The Force is given as:

The Force act on each side is 2.43×10⁴N
Answer:
- path differnce = 2.18*10^-6
- 1538 lines
Explanation:
- The path difference for the waves that produce the pattern of diffraction, is given by the following formula:
(1)
d: separation between slits = 0.50mm = 0.50*10^-3 m
θ: angle of a diffraction = 0.25°
Then, the path difference is:

- The maximum number of bright lines are calculated by using the following formula:
(2)
m: order of the bright
λ: wavelength = 650nm
The maximum bright is calculated for an angle of 90°:

The maxium number of bright lines are twice the previous result, that is, 1538 lines
-- Speed = (distance) / (time to cover the distance) = 840/2.5 = 336 m/s
-- Frequency = (speed) / (wavelength) = 336/0.70 = 480 Hz.
Answer:
If the rifle is held loosely away from the shoulder, the recoil velocity will be of -8.5 m/s, and the kinetic energy the rifle gains will be 81.28 J.
Explanation:
By momentum conservation, <em>and given the bullit and the recoil are in a straight line</em>, the momentum analysis will be <em>unidimentional</em>. As the initial momentum is equal to zero (the masses are at rest), we have that the final momentum equals zero, so

now we clear
and use the given data to get that

<em>But we have to keep in mind that the bullit accelerate from rest to a speed of 425 m/s</em>, then <u>if the rifle were against the shoulder, the recoil velocity would be a fraction of the result obtained</u>, but, as the gun is a few centimeters away from the shoulder, it is assumed that the bullit get to its final velocity, so the kick of the gun, gets to its final velocity
too.
Finally, using
we calculate the kinetic energy as

Answer:
When the ball hits the ground, the velocity will be -34 m/s.
Explanation:
The height and velocity of the ball at any time can be calculated using the following equations:
y = y0 + v0 · t + 1/2 · g · t²
v = v0 + g · t
Where:
y = height of the ball at time "t".
y0 = initial height.
v0 = initial velocity.
t = time.
g = acceleration due to gravity. (-9.8 m/s² considering the upward direction as positive).
v = velocity at time "t".
If we place the origin of the frame of reference on the ground, when the ball hits the ground its height will be 0. Then using the equation of height, we can calculate the time it takes the ball to reach the ground:
y = y0 + v0 · t + 1/2 · g · t²
0 = 60 m + 0 m/s · t - 1/2 · 9.8 m/s² · t²
0 = 60 m - 4.9 m/s² · t²
-60 m / -4.9 m/s² = t²
t = 3.5 s
Now, with this time, we can calculate the velocity of the ball when it reaches the ground:
v = v0 + g · t
v = 0 m/s - 9.8 m/s² · 3.5 s
v = -34 m/s
When the ball hits the ground, the velocity will be -34 m/s.