Answer:
K₂Cr₂O₇(s) ⇒ 2 K⁺(aq) + Cr₂O₇²⁻(aq)
Explanation:
Potassium dichromate (K₂Cr₂O₇) is a strong electrolyte, that is, when dissolved in water (the medium), it dissociates in cation potassium (K⁺) and anion dichromate (Cr₂O₇²⁻). The balanced dissociation equation is:
K₂Cr₂O₇(s) ⇒ 2 K⁺(aq) + Cr₂O₇²⁻(aq)
pH=6.98
Explanation:
This is a very interesting question because it tests your understanding of what it means to have a dynamic equilibrium going on in solution.
As you know, pure water undergoes self-ionization to form hydronium ions, H3O+, and hydroxide anions, OH−.
2H2O(l]⇌H3O+(aq]+OH−(aq]→ very important!
At room temperature, the value of water's ionization constant, KW, is equal to 10−14. This means that you have
KW=[H3O+]⋅[OH−]=10−14
Since the concentrations of hydronium and hydroxide ions are equal for pure water, you will have
[H3O+]=√10−14=10−7M
The pH of pure water will thus be
pH=−log([H3O+])
pH=−log(10−7)=7
Now, let's assume that you're working with a 1.0-L solution of pure water and you add some 10
The correct answer to
the question that is stated above is letter c, <span> the outer electron shell.</span>
Valence electrons occur<span> in the outermost shells of an </span>atom.
>> <span>Valence electrons are </span>electrons<span> that are associated with an </span>atom<span>, and that can participate in the formation of a </span>chemical bond.
Omg that is that ( but I do not know this