Answer:
1.22 mL
Explanation:
Let's consider the following balanced reaction.
2 AgNO₃ + BaCl₂ ⇄ Ba(NO₃)₂ + 2 AgCl
The molar mass of silver chloride is 143.32 g/mol. The moles corresponding to 0.525 g are:
0.525 g × (1 mol/143.32 g) = 3.66 × 10⁻³ mol
The molar ratio of AgCl to BaCl₂ is 2:1. The moles of BaCl₂ are 1/2 × 3.66 × 10⁻³ mol = 1.83 × 10⁻³ mol.
The volume of 1.50 M barium chloride containing 1.83 × 10⁻³ moles is:
1.83 × 10⁻³ mol × (1 L/1.50 mol) = 1.22 × 10⁻³ L = 1.22 mL
Answer:
Ea=5.5 Kcal/mole
Explanation:
Let rate constant are and at temperature and
By using Arrhenius equation at two different two different temperature,
By putting value of R=2 cal/mole.K
By rounding off upto 2 significant figure;
2 HClO(aq) + Ca(OH)2(aq) = 2 H2O(l) + Ca(ClO)2(aq) is the balanced equation
B. Molecules in both the metal and the surrounding air will start moving at higher speeds.
Answer:
3.6 grams of NaCl are needed
Explanation:
Percent solution are solutions whose concentrations are expressed in percentages. The amount(either weight or volume) of a solute is expressed as a percentage of the total weight or volume of solution. Percent solutions can either be expressed as weight/volume % (wt/vol % or w/v %), weight/weight % (wt/wt % or w/w %), or volume/volume % (vol/vol % or v/v %).
A 6.0% wt/wt % solution contains 6 g of solute in 100 g of solution
Therefore, a 100 g solution contains 6.0 g of solute.
60 g of 6.0% solution will contain 60 g solution * 6.0 g solute/ 100 g solution
Mass of NaCl present = 3.6 g of NaCl