Answer:
Mass of one electron is 9.1 × 10⁻³¹ kg
Mass of one proton is 1.673 × 10⁻²⁷ Kg
Mass of one neutron is 1.675 × 10⁻²⁷ Kg
<u>-TheUnknownScientist</u><u> 72</u>
Answer:
im pretty sure its 2...
Explanation:
if its wrong im sorry
if its right brainliest pls?
Answer:
<h3>The answer is 3000 N</h3>
Explanation:
The amount of force can be found by using the formula

w is the workdone
d is the distance
From the question we have

We have the final answer as
<h3>3000 N</h3>
Hope this helps you
Answer:
<h2>0.15 moles</h2>
Explanation:
To find the number of moles in a substance given it's number of entities we use the formula

where n is the number of moles
N is the number of entities
L is the Avogadro's constant which is
6.02 × 10²³ entities.
From the question we have

We have the final answer as
<h3>0.15 moles</h3>
Hope this helps you
Answer:
Fluorine
General Formulas and Concepts:
<u>Chemistry</u>
- Reading a Periodic Table
- Periodic Trends
- Electronegativity - the tendency for an element to attract an electron to itself
- Z-effective and Coulomb's Law, Forces of Attraction
Explanation:
The Periodic Trend for Electronegativity is up and to the right of the Periodic Table.
Fluorine is Element 9 and has 9 protons. Radium is Element 88 and has 88 protons. Therefore, Radium has a bigger Zeff than Flourine.
However, since Radium is in Period 7 while Fluorine is in Period 2, Radium has more core e⁻ than Fluorine does. This will create a much larger shielding effect, causing Radium's outermost e⁻ to have less FOA between them. Fluorine, since it has less core e⁻, the FOA between the nucleus and outershell e⁻ will be much stronger.
Therefore, Fluorine would attract an electron more than Radium, thus bringing us to the conclusion that Fluorine has a higher electronegativity.