Answer: density equals 3 g/mL
Step by step explanation:
D=m/v
D=45/15
D=3
Let's eliminate these one by one.
The first pair would not be the same, as X would most likely be in group IA, and Y would be in group VIIA, because of their tendency to gain and lose electrons.
The second pair would also violate the same rule, but X would most likely be in group IIA, and Y would most likely be in group VIA.
The third pair would not be the same, as X is most likely in group VIIA, and since Y has eight valence electrons, it is most likely a noble gas.
The final pair has X with atomic number 15, making it phosphorous. Phosphorous wants to gain 3 electrons to have a full octet of 8 outer "valence" electrons, and Y would also like to gain 3 electrons. This means it is possible that the final pair would be in the same group.
A chemical formula identifies each constituent element by its chemical symbol and indicates the proportionate number of atoms of each element.
<em>For example, the empirical formula of ethanol may be written C2H6O because the molecules of ethanol all contain two carbon atoms, six hydrogen atoms, and one oxygen atom.</em>
Answer:
Explanation:. A photograph is an image made by a photo-chemical reaction which records the impression of light on a surface coated with silver atoms. The reaction is possible due to the light-sensitive properties of silver halide crystals.
Answer:
2000pound
Explanation:
Manganese metal is produced from the manganese(III) oxide, Mn2O3, which is found in manganite, a manganese ore. The manganese is reduced from its +3 oxidation state in Mn2O3 to the zero oxidation state of the uncharged metal by reacting the Mn2O3 with a reducing agent such as aluminum or carbon. How many pounds of manganese are in 1.261 tons of Mn2O3? (1 ton = 2000 pounds)
About 40 different substances called organophosphorus compounds are registered in the United States as insecticides. They are considered less damaging to the environment than some other insecticides because they breakdown relatively rapidly in the environment. The first of these organophosphorus insecticides to be produced was tetraethyl pyrophosphate, TEPP, which is 33.11% carbon, 6.95% hydrogen, 38.59% oxygen, and 21.35% phosphorus. It has a molecular mass of 290.190.