Answer:
The mass of NaCl is 0.029 grams
Explanation:
Step 1: Data given
Molecular weight of NaCl = 58.44 g/mol
Volume of solution = 100 mL = 0.100 L
Molarity = 0.0050 M
Step 2: Calculate moles NaCl
Moles NaCl = molarity * volume
Moles NaCl = 0.0050 M * 0.100 L
Moles NaCl = 0.00050 moles
Step 3: Calculate mass NaCl
Mass NaCl = moles NaCl * molar mass NaCl
Mass NaCl = 0.00050 moles * 58.44 g/mol
Mass NaCl = 0.029 grams
The mass of NaCl is 0.029 grams
Lowest is Hydrogen highest is <span>Beryllium
-HOPE THIS HELPED </span>
Answer: The final pressure will decrease ad the value is 85 kPa
Explanation:
To calculate the final pressure of the system, we use the equation given by Gay-Lussac Law. This law states that pressure of the gas is directly proportional to the temperature of the gas at constant pressure.
Mathematically,

where,
are the initial pressure and temperature of the gas.
are the final pressure and temperature of the gas.
We are given:

Putting values in above equation, we get:

Hence, the final pressure will decrease ad the value is 85 kPa
The action that would most likely lead to. Decrease in volume is decrease in temperature.
Answer: 2 lone pairs, square planar
Explanation:
Using the VSEPR ( Valence Shell Electron Pair Repulsion)Theory
To calculate the number of lone pairs electron can be done using the formula;
Number of electrons = ½ (V+N-C+A)
V mean valency of the central atom
N means number of monovalent bonding atoms
C means charge on cation
A means charges on anion
Therefore, to calculate the number of lone pair electron C=A=0;
Number of electrons = ½ (8+4) = 12/2 = 6
Number of bonding pair = 4
Number of lone pairs of electron = 6-4 = 2
The hybridrization of the compound is sp3d2 because the number of electrons around the central atom is 6.
The geometry of the compound is square planar and this is because of the repulsion between the bonding pair of electrons and lone pair of electrons which causes the lone pair of electrons to lie in a perpendicular plane in order to acquire stability.