Answer:
Damian here!! :))
The carbon family consists of the elements carbon (C), silicon (Si), germanium (Ge), tin (Sn), lead (Pb), and flerovium (Fl). Atoms of elements in this group have four valence electrons. The carbon family is also known as the carbon group, group 14, or the tetrels. Elements in this family are of key importance for semiconductor technology.
Explanation:
Hope this helps? :))
The total number of protons in this atom is 79 because an atomic number of an element is equal to the number of protons. Here, the atomic number is 79 after adding the given electronic configuration.
What are Protons?
Every atom has a proton, a subatomic particle, in its nucleus. The particle possesses an electrical charge that is positive and opposite to the electrons.
What is Atom?
A nucleus plus one or more electrons bound to the nucleus make up an atom. The quantity of protons or electrons in an element's atom determines how different it is from other similar elements. The atomic number of an element, which serves as its primary identification, is the sum of its protons or electrons.
What is Electronic configuration?
The arrangement of electrons in atomic or molecular orbitals within an atom, molecule, or other physical structure is known as the electron configuration.
Hence, the total number of protons in this atom is 79, after adding 2 + 8 + 18 + 32 + 18 + 1.
To know more about Atom, check out:
brainly.com/question/6258301
#SPJ4
Answer is B.
As the diaphragm contracts and flattens, it increases the volume of the thorax where the lungs are located. This results in a decrease in pressure (Boyle’s Law, if you know it) that creates a pressure gradient from outside to inside. This is what causes air to move into the lungs.
The options attached to the question above are listed below:
A. Magnetic field.
B. Type of wire.
C. Velocity of the wire.
D. Length of the wire in the field.
ANSWER
The correct option is B.
The factors that determine the induced current in a system are: the number of wires in the coil, the strength of the magnetic field and speed of armature rotation [speed of cutting]. Generally, the induced electromotive force across a conductor is equal to the rate at which magnetic flux is cut by the conductor. The type of wire used does not affect the induced EMF.
The average rate of reaction over a given interval can be calculated by taking the difference of concentration on a particular given reactant, and dividing it by the total time. In this case, (1.00 M - 0.655 M)/30 s = 0.0115 M/s, or 0.0115 mol/L-s, and this is the final rate of reaction.