Answer:
HCl
Explanation:
The best solvent for NaF is a polar liquid. The only liquid having a significant dipole moment among the options is HCl due to the large electro negativity difference between hydrogen and chlorine.
The polar solvent can interact with the NaF via its dipoles such that the NaF dissolves due to ion-dipole interaction.
A) Cu
Cu + 2HCl --> CuCl2 + H2(g)
Products predicted: Copper(II) choloride and hydrogen gas
B) Mg
Mg + 2HCl --> MgCl2 + H2
Products predicted: magnesium chloride + hygrogen gas
C) Fe
Fe +2 HCl -> FeCl2 + H2, or
2Fe +6 HCl -> 2FeCl3 + 3H2
Products predicted: Iron(II) chloride, iron (III) chloride and hydrogen gas.
In the given situation, the reaction is-
NO + H2 ↔ Products
The rate of the reaction can be expressed (in terms of the decrease in the concentration of the reactants) as-
Rate = -dΔ[NO]/dt = -dΔ[H2]/dt
Now, if the concentration of NO is decreased there will be fewer molecules of the reactant NO which would decrease the its collision with H2. As a result the rate of the forward reaction would also decrease.
Ans) A decrease in the concentration of nitrogen monoxide decreases the collisions between NO and H2 molecules. the rate of the forward reaction then decreases.
Answer ————
60.8 g ammonia
Number of electron pairs = \frac{1}{2}[V+N-C+A]
2
1
[V+N−C+A]
V = number of valence electrons present in central atom
N = number of monovalent atoms bonded to central atom
C = charge of cation
A = charge of anion
SbCl_5SbCl
5
:
In the given molecule, antimony is the central atom and there are five chlorine as monovalent atoms.
The number of electron pairs are 5 that means the hybridization will be sp^3dsp
3
B and geometry of the molecule will be trigonal bipyramidal.