9.97903 kilograms is the answer
The correct answer is D . Milk
Answer:
Pyridine solution has a greater concentration of hydroxide ions.
Explanation:
The pOH of the solution is defined as negative logarithm of hydroxide ion concentration in a solution.
![pOH=-\log [OH^-]](https://tex.z-dn.net/?f=pOH%3D-%5Clog%20%5BOH%5E-%5D)
- Higher the value of pOH lessor will be the hydroxide ion concentration and higher the concentration of hydrogen ions in the solution .
- Lower the value of pOH higher will be the hydroxide ion concentration and lower the concentration of hydrogen ions in the solution.
1) The pOH of the methylamine = 6.8
![6.8=-\log[OH^-]](https://tex.z-dn.net/?f=6.8%3D-%5Clog%5BOH%5E-%5D)
![[OH^-]=1.5848\times 10^{-7} M](https://tex.z-dn.net/?f=%5BOH%5E-%5D%3D1.5848%5Ctimes%2010%5E%7B-7%7D%20M)
2) The pOH of the pyridine = 6.0
![6.0=-\log[OH^-]](https://tex.z-dn.net/?f=6.0%3D-%5Clog%5BOH%5E-%5D)
![[OH^-]=0.000001 M=1.0\times 10^{-6} M](https://tex.z-dn.net/?f=%5BOH%5E-%5D%3D0.000001%20M%3D1.0%5Ctimes%2010%5E%7B-6%7D%20M)
Pyridine solution has a greater concentration of hydroxide ions than the solution of methylamine.
Atoms, the main constituents of matter, consist of positively charged protons and neutral neutrons within a nucleus which are surrounded by a sea of electrons that sit in distinct shells. The electrons on the outer shell are known as valence electrons. The valence can be descibed as the smaller number of electrons an atom has to borrow or to lend, the greater the activity.
The answer is B.