Answer:
D. -1882J
Explanation:
We can solve the energy released in a chemical reaction in an aqueous medium using the equation:
Q = -m*C*ΔT
<em>Where Q is energy (In J),</em>
<em>m is mass of water (45.00g)</em>
<em>C is specific heat of water (4.184J/g°C)</em>
<em>And ΔT is change in temperature (25.00°C - 15.00°C = 10.00°C)</em>
<em />
Replacing:
Q = -45.00*4.184J/g°C*10.00°C
Q = -1882J
Right answer is:
<h3>D. -1882J</h3>
<em />
<h3>
Answer:</h3>
1.85 M
<h3>
Explanation:</h3>
<u>We are given;</u>
- Number of moles as 0.50 mol
- Volume of the solution is 270 ml
But, 1000 mL = 1 L
- Thus, volume of the solution is 0.27 L
We are required to calculate the molarity of the solution;
- Molarity refers to the concentration of a solution in moles per liter.
- It is calculated by dividing number of moles with the volume.
Molarity = Moles ÷ Volume
In this case;
Molarity = 0.50 moles ÷ 0.27 L
= 1.85 Mol/L or 1.85 M
Therefore, molarity of the solution is 1.85 M
Balance the chemical equation for the chemical reaction.
Convert the given information into moles.
Use stoichiometry for each individual reactant to find the mass of product produced.
The reactant that produces a lesser amount of product is the limiting reagent.
The reactant that produces a larger amount of product is the excess reagent.
To find the amount of remaining excess reactant, subtract the mass of excess reagent consumed from the total mass of excess reagent given.