Answer:
Least is 7
Most is 12
Step-by-step explanation:
So 2 shirts for 12.
So 24
Take 24 off of both
Left with 21 to 36
21÷3 is 7
36÷3 is 12
Hope this helps
2 3/4 = 2.75
1 1/2 = 1.5
3 3.4 = 3.75
2.75 + 1.5 + 3.75 = 8
You hiked 8 miles last month in total.
Answer:
Step-by-step explanation:
we can use the trigonometric function in a right triangle
cos x = adjacent side to the angle /hypothenuse
cos 36°= x/10 ; multiply both sides by 10
10 * cos 36° = x ; make sure your calculator mode is in degrees
8.1 = x
Answer:
Matrix multiplication is not conmutative
Step-by-step explanation:
The matrix multiplication can be performed if the number of columns of the first matrix is equal to the number of rows of the second matrix
Let A with dimension mxn and B with dimension nxp represent two matrix
The multiplication of A by B is a matrix C with dimension mxp, but the multiplication of B by A is can't be calculated because the number of columns of B is not the number of rows of A. Therefore, you can notice that is not conmutative in general.
But even if the multiplication of AB and BA is defined (For example if A and B are squared matrix of 2x2) the multiplication is not necessary conmutative.
The matrix multiplication result is a matrix which entries are given by dot product of the corresponding row of the first matrix and the corresponding column of the second matrix:
![A=\left[\begin{array}{ccc}a11&a12\\a21&a22\end{array}\right]\\B= \left[\begin{array}{ccc}b11&b12\\b21&b22\end{array}\right]\\AB = \left[\begin{array}{ccc}a11b11+a12b21&a11b12+a12b22\\a21b11+a22b21&a21b12+a22b22\end{array}\right]\\\\BA=\left[\begin{array}{ccc}b11a11+b12a21&b11a12+b12a22\\b21a11+b22ba21&b21a12+b22a22\end{array}\right]](https://tex.z-dn.net/?f=A%3D%5Cleft%5B%5Cbegin%7Barray%7D%7Bccc%7Da11%26a12%5C%5Ca21%26a22%5Cend%7Barray%7D%5Cright%5D%5C%5CB%3D%20%5Cleft%5B%5Cbegin%7Barray%7D%7Bccc%7Db11%26b12%5C%5Cb21%26b22%5Cend%7Barray%7D%5Cright%5D%5C%5CAB%20%3D%20%5Cleft%5B%5Cbegin%7Barray%7D%7Bccc%7Da11b11%2Ba12b21%26a11b12%2Ba12b22%5C%5Ca21b11%2Ba22b21%26a21b12%2Ba22b22%5Cend%7Barray%7D%5Cright%5D%5C%5C%5C%5CBA%3D%5Cleft%5B%5Cbegin%7Barray%7D%7Bccc%7Db11a11%2Bb12a21%26b11a12%2Bb12a22%5C%5Cb21a11%2Bb22ba21%26b21a12%2Bb22a22%5Cend%7Barray%7D%5Cright%5D)
Notice that in general, the result is not the same. It could be the same for very specific values of the elements of each matrix.