Answer:
<em>What is atmospheric pressure? -------> Atmospheric pressure is a force in an area pushed against a surface by the weight of the atmosphere of Earth, a layer of air.</em>
<em>Why does the atmosphere exert pressure? -------> Because gas particles in the air—like particles of all fluids—are constantly moving and bumping into things, so they exert pressure. </em>
<em>What is the value of atmospheric pressure at sea level, in newtons per square centimeter? -------> Atmospheric pressure at sea level is about 10 N/cm2 or 100 kPa or about 10 m of water or about 760 mm of mercury, but varies with the weather, and of course altitude.</em>
<em>I hope this helps and have a great day!</em>
Explanation:
The untrue statement is that they high melting points.
The covalent compounds are the compounds exhibiting strong intra-molecular bonds. This is due to the tightness of the atoms within the covalent molecules. The force of attraction between the individual molecules in a covalent compound seems to be weak. The covalent compounds exhibit weak intermolecular forces that hold the atoms together due to this they have a low melting point.
Answer:
![K=K_1*K_2\\\\K=\frac{[H_2]^3[CO_2][H_2]}{[CH_4][H_2O][H_2O]}](https://tex.z-dn.net/?f=K%3DK_1%2AK_2%5C%5C%5C%5CK%3D%5Cfrac%7B%5BH_2%5D%5E3%5BCO_2%5D%5BH_2%5D%7D%7B%5BCH_4%5D%5BH_2O%5D%5BH_2O%5D%7D)
Explanation:
Hello there!
In this case, for the given chemical reaction, it turns out firstly necessary to write the equilibrium expression for both reactions 1 and 2:
![K_1=\frac{[CO][H_2]^3}{[CH_4][H_2O]} \\\\K_2=\frac{[CO_2][H_2]}{[CO][H_2O]}](https://tex.z-dn.net/?f=K_1%3D%5Cfrac%7B%5BCO%5D%5BH_2%5D%5E3%7D%7B%5BCH_4%5D%5BH_2O%5D%7D%20%5C%5C%5C%5CK_2%3D%5Cfrac%7B%5BCO_2%5D%5BH_2%5D%7D%7B%5BCO%5D%5BH_2O%5D%7D)
Now, when we combine them to get the overall expression, we infer these two are multiplied to get:
![K=K_1*K_2\\\\K=\frac{[CO][H_2]^3}{[CH_4][H_2O]} *\frac{[CO_2][H_2]}{[CO][H_2O]}\\\\K=\frac{[H_2]^3[CO_2][H_2]}{[CH_4][H_2O][H_2O]}](https://tex.z-dn.net/?f=K%3DK_1%2AK_2%5C%5C%5C%5CK%3D%5Cfrac%7B%5BCO%5D%5BH_2%5D%5E3%7D%7B%5BCH_4%5D%5BH_2O%5D%7D%20%2A%5Cfrac%7B%5BCO_2%5D%5BH_2%5D%7D%7B%5BCO%5D%5BH_2O%5D%7D%5C%5C%5C%5CK%3D%5Cfrac%7B%5BH_2%5D%5E3%5BCO_2%5D%5BH_2%5D%7D%7B%5BCH_4%5D%5BH_2O%5D%5BH_2O%5D%7D)
Regards!
8.948 I’m pretty sure I hope this helped
Answer:
The general equation for an exothermic reaction is: Reactants → Products + Energy.