That is because work requires energy. According to the law of conservation of energy, it cannot be created or destroyed. When doing work, energy change forms and gets transferred to the object until it is released.
for example, when you lift up an object and place it on a higher elevation, you transferred energy to it and gave it potential energy. The potential energy is transformed into kinetic energy when the object falls down, and if it hits a surface, the energy will scatter, vibrating the areas around it and producing sound.
Also, work= force X distance. The energy does not go away, but rather get changed into some other form of energy
Answer:
B) collision is inelastic because they stick together after collision and share a common final velocity Vf
C) M1V1 + M2V2 = (M1 + M2)Vf
D) Vf = 6.33m/s
E) force = 3040N
Explanation:
Detailed explanation and calculation is shown in the image below
Given data:
* The extension of the steel wire is 0.3 mm.
* The length of the wire is 4 m.
* The area of cross section of wire is,

* The young modulus of the steel is,

Solution:
The young modulus of the steel in terms of the force and extension is,

where F is the force acting on the steel wire,, l is the original length of the wire, dl is the extension of the wire, and A is the area,
Substituting the known values,

Thus, the force which produce the extension of 0.3 mm of the steel wire is 31.5 N.
A) Vi= 60 m/s
a= -9.81 m/s^2
Vf= 0m/s^2
d=?
Vf^2=Vi^2+2ad
(0m/s)^2=(60m/s)^2+2(-9.81m/s^2)d
0=3600+(-19.62)d
-3600=(-19.62)d
(-3600)/(-19.62)=(-19.62)d/(-19.62)
d=183.5m
c) Vi= 60 m/s
a= -9.81 m/s^2
Vf= 0m/s^2
t=10s
d=?
d=Vi*t+(1/2)a*t^2
d=60m/s(10s)+(1/2)(-9.81m/s^2)(10s)^2
d=600+(-4.905)(100)
d=600+(-490.5)
d=108.5m
65.5 mph I hope this helps and is correct