Answer:
The VSEPR theory and how it predicts the shapes of molecules:
Explanation:
The Valence Shell Electron Pair Repulsion (VSEPR) theory is a model used in chemistry to predict the shapes of individual molecules by the number of electron pairs that they have in the center of the atom. This theory is also based on the notion that the electrons around the atom repel one another. The Valence electrons on the outermost layer of the molecule are the most important in defining the geometry as they are the first to interact with other atoms and will be involved in bonding.
Answer:
Magnetism at atomic /sub - atomic levels is mostly due to charged particles called electrons. Electrons have spin which give them angular momentum and thus a magnetic moment associated with it. That is the cause of Magnetism at atomic levels. Electrons fill up orbitals in atoms in pairs.
Answer:
ΔE = 1.031 eV
Explanation:
For this exercise let's calculate the energy of the photons using Planck's equation
E = h f
wavelength and frequency are related
c = λ f
f = c /λ
let's substitute
E = h c /λ
let's calculate
E = 6.63 10⁻³⁴ 3 10⁸/1064 10⁻⁹
E = 1.869 10⁻¹⁹ J
let's reduce to eV
E = 1.869 10⁻¹⁹ J (1 eV / 1.6 10⁻¹⁹ J)
E = 1.168 eV
therefore the electron affinity is
ΔE = E - 0.137
ΔE = 1.168 - 0.137
ΔE = 1.031 eV
Answer: The correct answer is zero work done.
Explanation:
Work is said to be done when the object moves through a distance when the force is applied to the object.
If the object does not move a distance even the force is exerted on the object then the work done is zero in this case.
Therefore, when the force is exerted even when no work is done then this is called zero work done.