The formula to find the kinetic energy is:
Ek= 1/2 × m × v^2
1. Ek= 1/2×15×3^2
= 67.5 J
2.Ek= 1/2×8×4^2
=64 J
3.Ek= 1/2×12×5^2
= 150 J
4.Ek= 1/2×10×6^2
= 180 J
So the fourth dog has the most kinetic energy.
If you dont wear protection while shooting a rifle it will damge your hear
Answer:
So coefficient of kinetic friction will be equal to 0.4081
Explanation:
We have given mass of the block m = 0.5 kg
The spring is compressed by length x = 0.2 m
Spring constant of the sprig k = 100 N/m
Blocks moves a horizontal distance of s = 1 m
Work done in stretching the spring is equal to 
This energy will be equal to kinetic energy of the block
And this kinetic energy must be equal to work done by the frictional force
So 


So coefficient of kinetic friction will be equal to 0.4081
"Acceleration" does NOT mean speeding up. It also doesn't mean
slowing down. Acceleration means ANY change in the speed
OR DIRECTION of motion.
The only kind of motion that's NOT accelerated is motion at a steady
speed AND in a straight line.
Even when your speed is steady, you're accelerating if your direction
is changing.
A few examples:
(no speeds are changing):
-- driving on a curved road, or turning a corner
-- going around a curve on a skateboard, a bike, or a Segway
-- running on a quarter-mile track
-- an Indy car cruising a practice lap around the track
-- water spinning, getting ready to go down the drain
-- any point on the blade of a fan
-- the little ball going around the inside of a Roulette wheel
-- the Moon in its orbit around the Earth
-- the Earth in its orbit around the sun