1 inch = 2.54cm. 11*2.54 = 27.94cm. You would use multiplication. Hope this helps!! Can I get brainliest pls
Answer:
V1 = 2221.33 L
Explanation:
The system is about a ideal gas. Then you can use the equation for ideal gases for a volume V1, temperature T1 and pressure P1:
(1)
And also for the situation in which the variables T, V and P has changed:
(1)
R: constant of ideal gases = 0.082 L.atm/mol.K
For both cases (1) and (2) the number of moles are the same. Next, you solve for n in (1) and (2):

Next, you equal these equations an solve for T2:

Finally you replace the values of P2, V2, T1 and T2:

Hence, the initial volume of the gas is 2221.33 L
Ok, but where’s the question?
Here is the highly detailed, arcane, complex, technical form of Ohm's Law that is needed in order to answer this question ===> I = V / R .
Current = (voltage) / (resistance)
Current = (1.5 V) / (10 Ω)
<em>Current = 0.15 Ampere</em>
<span> In radioactive decay, an unstable atomic nucleus emits particles or radiation and converts to a different atomic nucleus. If the new nucleus is unstable, it will decay again, until eventually, a stable nucleus is formed. Such a sequence of nuclear decays forms a decay series.
The half-life of a radioactive substance is the time required for half of the atoms of a radioactive isotope to decay. If you have, say, 1 million atoms of a specific isotope in a sample, the time required for 500,000 of those atoms to decay is the half-life of that specific isotope. If you have 50 atoms of that isotope, 25 atoms will decay in the same amount of time.
Because the half-life is fixed for a specific isotope, it can be used to date objects. You compare the decay rate of an old object with the decay rate of a fresh sample. Nuclear decay is a first-order process and can be described by a specific mathematical equation, which depends on the decay rate and the half-life. Knowing those values, you can work back and determine the age of an object, as compared with a standard sample. Old objects will not have as much of a radioactive isotope in them as new objects, since the isotopes will have decayed over time in the old object.</span>