Answer:
<em>b. Observe the radio waves coming from all dark matter; from the strength of the radio waves from each cluster, estimate the amount of dark matter needed to produce them.</em>
<em></em>
Explanation:
The universe is thought to be made up of 85% dark matters. <em>Dark matter is called dark because it does not appear to interact with the electromagnetic field, which means it doesn't absorb, reflect or emit electromagnetic radiation, and is therefore difficult to detect. This means that option b is wrong since radio wave is an electromagnetic wave</em>. Dark matter is a form of matter that makes up about a quarter of the total mass–energy density of the universe. Dark matter was theorized due a variety of astrophysical observations and gravitational effects that cannot be explained by accepted theories of gravity unless there were more matter in the universe than can be seen.
Explanation:
It varies with altitude, but at sea level, it's 9.8 m/s².
Answer: A.
As a diver rises, the pressure on their body decreases which allows the volume of the gas to decrease.
Explanation:
The problem is that a diver, experiences an increased pressure of water compresses nitrogen and more of it dissolves into the body. Just as there is a natural nitrogen saturation point at the surface, there are saturation points under water. Those depend on the depth, the type of body tissue involved, and also how long a diver is exposed to the extra pressure. The deeper a diver go, the more nitrogen the body absorbs.
The problem is getting rid of the nitrogen once you ascend again. As the pressure diminishes, nitrogen starts dissolving out of the tissues of the diver's body, a process called "off-gassing." That results in tiny nitrogen bubbles that then get carried to the lungs and breathed out. However, if there is too much nitrogen and/or it is released too quickly, small bubbles can combine to form larger bubbles, and those can do damage to the body, anything from minor discomforts all the way to major problems and even death.
Answer: equation for the reaction is given below
PCL2+PCL3=PCL5
Where pcl2=0.40atm,pcl3=0.27atm
Pcl5=0.0029atm
Using ∆G=-RTin(PCL5/PCl2*PCL3)
Where R=8.314J/K/mol and T=298K
∆G=-8.314*298in(0.0029/0.40*.27)
∆G=8962.6J/mol
Explanation:
The speed of the block when the compression is 15 cm is 9.85 m/s.
The given parameters;
- <em>mass of the block, m = 2.4 kg</em>
- <em>height of the block, h = 5 m</em>
- <em>compression of the spring, x = 25 cm = 0.25 m</em>
The spring constant is calculated as follows;

The speed of the block when the compression is 15 cm can be determined by applying the principle of conservation of energy;

Thus, the speed of the block when the compression is 15 cm is 9.85 m/s.
Learn more here:brainly.com/question/14289286