Answer:
C
technically B too but youre teachers not that smart so there you go
Average speed = (total distance) / (total time)
Average speed = (4+7+1+2 blox) / (1 hour)
<em>Average speed = 14 blocks/hour</em>
<em></em>
I'm gonna go out on a limb here and take a wild guess:
I'm guessing that there's another question glued onto the end of this one, and it asks you to find either her displacement or her average velocity. I'm so sure of this that I'm gonna give you the solution for that too. If there's no more question, then you won't need this, and you can just discard it. I won't mind.
Average velocity = (displacement) / (time for the displacement)
"Displacement" = distance and direction from the start point to the end point, regardless of how she got there.
Displacement = (4E + 7W + 1E + 2W)
Displacement = (5E + 9W)
<em>Displacement = 4 blocks west</em>
Average velocity = (4 blocks west) / (1 hour)
<em>Average velocity = 4 blocks/hour West</em>
Answer:
Part A) the angular acceleration is α= 44.347 rad/s²
Part B) the angular velocity is 195.13 rad/s
Part C) the angular velocity is 345.913 rad/s
Part D ) the time is t= 7.652 s
Explanation:
Part A) since angular acceleration is related with angular acceleration through:
α = a/R = 10.2 m/s² / 0.23 m = 44.347 rad/s²
Part B) since angular acceleration is related
since
v = v0 + a*(t-t0) = 51.0 m/s + (-10.2 m/s²)*(3.4 s - 2.8 s) = 44.88 m/s
since
ω = v/R = 44.88 m/s/ 0.230 m = 195.13 rad/s
Part C) at t=0
v = v0 + a*(t-t0) = 51.0 m/s + (-10.2 m/s²)*(0 s - 2.8 s) = 79.56 m/s
ω = v/R = 79.56 m/s/ 0.230 m = 345.913 rad/s
Part D ) since the radial acceleration is related with the velocity through
ar = v² / R → v= √(R * ar) = √(0.23 m * 9.81 m/s²)= 1.5 m/s
therefore
v = v0 + a*(t-t0) → t =(v - v0) /a + t0 = ( 1.5 m/s - 51.0 m/s) / (-10.2 m/s²) + 2.8 s = 7.652 s
t= 7.652 s
Answer:
10 N
Explanation:
F = ma = m(Δv/t) = 5.0(10.0 - 0)/5.0 = 10 N