This question requires the use of the equation of motion:
v = u + at [v is final velocity (0), u is initial velocity (24), a is acceleration, t is time (13)]
to calculate the acceleration. This can then be multiplied by the mass of the plane to obtain the net force via:
F = ma (F is force, m is mass, a is acceleration)
First, we calculate the acceleration:
0 = 24 + 13(a)
a = -24/13 m/s^2
The force is then:
F = 90000 * (-24/13)
F = -1.66*10^5 Newtons
The negative sign indicates that the force and acceleration are in the opposite direction as the velocity (since we took velocity to be positive)
We have that the most stable nuclei are the ones with the highest average binding energy. We see that Nitrogen has a mass number of 15 and that in this region of the graph average binding energy is low. Silver and Gold are along a line where there is a constant decline in average binding energy; silver has more than gold. However, we see that at the start of this decline, there is Fe 56. This region has the elements with the highest average binding energy; Nickel with a mass number of 58 is right there and thus it is the most stable nucleus out of the listed ones.
Answer:
<h3> 3.057m</h3>
Explanation:
According to law of gravitation;
F = GMm/d²
G is the universal gravitation
M and m are the masses
d is the distance between the masses
d² = GMm/F
d² = 6.67408 × 10-11 *3000*7000/0.0015
d² = 140.15568*10^-5/0.0015
d² = 1.4016*10^-3/0.0015
d² = 1.4016*10^-3/1.5*10^-3
d² = 0.9344*10
d² = 9.344
d = √9.344
d = 3.057m
Hence the distance between the two objects is 3.057m
-- The sample was a fluid.
-- It was a mixture or a suspension ... NOT a solution.
Answer:
33.6 Ns backward.
Explanation:
Impulse: This can be defined as the product of force and time. The S.I unit of impulse is Ns.
From Newton's second law of motion,
Impulse = change in momentum
I = mΔv................................. Equation 1
Where I = impulse, m = mass of the skater, Δv = change in velocity = final velocity - initial velocity.
Given: m = 28 kg, t = 0.8 s, Δv = -1.2-0 = -1.2 m/s (Note: the initial velocity of the skater = 0 m/s)
Substituting into equation 1
I = 28(-1.2)
I = -33.6 Ns
Thus the impulse = 33.6 Ns backward.