The skater's final angular speed is equal to 12 rad/s.
When implemented to angular momentum, the regulation of conservation means that the momentum of a rotating item is no longer exchanged until some form of external torque is carried out. Torque, in this sense, can check with any outside pressure that acts upon the object for the purpose to twist or rotate.
The law of conservation of angular momentum states that once no external torque acts on an item, no trade of angular momentum will occur. The angular momentum of a machine is conserved as long as there may be no net external torque performing on the machine.
In angular kinematics, the conservation of angular momentum refers back to the tendency of a device to keep its rotational momentum inside the absence of outside torque. For a round orbit, the system for angular momentum is (mass) ×(pace) ×(radius of the circle): (angular momentum) = m × v × r.
Learn more about angular momentum here brainly.com/question/7538238
#SPJ4
14m/s
Explanation:
Given parameters:
Height of the ball = 10m
Unknown:
Velocity of fall or final velocity = ?
Solution:
We are going to use the appropriate equation of motion to solve this problem.
The object is falling with respect to gravity.
V² = U² + 2gH
where V is the final velocity
U is the initial velocity
g is the acceleration due to gravity 9.8m/s²
H is the height of fall
The initial velocity here is zero and
V² = 2 x 9.8 x 10 = 196
V = 14m/s
learn more:
Motion problems brainly.com/question/5248528
#learnwithBrainly
The net charge on an atom is equal to the overall difference between the number of protons in the nucleus versus the number of electrons around the nucleus, where a negative sign represents less protons and a positive sign represents more protons (than electrons).
Answer:
Explanation:
In order to solve this problem we need to make a free body diagram of the book and the forces that interact on it. In the picture below you can see the free body diagram with these forces.
The person holding the book is compressing it with his hands, thus exerting a couple of forces of equal magnitude and opposite direction with value F.
Now the key to solving this problem is to analyze the equilibrium condition (Newton's third law) on the x & y axes.
To find the weight of the book we simply multiply the mass of the book by gravity.
W = m*g
W = 1.3[kg] * 9.81[m/s^2]
W = 12.75 [N]