Because gravity accelerates all objects the same regardless of their mass
First example: book, m= 0.75 kg, h=1.5 m, g= 9.8 m/s², it has only potential energy Ep,
Ep=m*g*h=0.75*9.8*1.5=11.025 J
Second example: brick, m=2.5 kg, v=10 m/s, h=4 m, it has potential energy Ep and kinetic energy Ek,
E=Ep+Ek=m*g*h + (1/2)*m*v²=98 J + 125 J= 223 J
Third example: ball, m=0.25 kg, v= 10 m/s, it has only kinetic energy Ek
Ek=(1/2)*m*v²=12.5 J.
Fourth example: stone, m=0.7 kg, h=7 m, it has only potential energy Ep,
Ep=m*g*h=0.7*9.8*7=48.02 J
The order of examples starting with the lowest energy:
1. book, 2. ball, 3. stone, 4. brick
From that list, only the frequency makes the difference.
Einstein won his only Nobel Prize for his explanation of this effect.
Answer:
B
Explanation:
Gravitational Energy is the energy of position or place. A rock resting at the top of a hill contains gravitational Potential energy. Hydropower, such as water in a reservoir behind a dam, is an example of gravitational potential energy.
Answer:Near-field communication
Explanation:
Near Field Communication is an umbrella term that applies to location-aware technologies that allow devices to communicate securely with each other over short distances. Near-field communication is a short-range wirelessconnectivity standard that uses magnetic field induction to enable communication between devices when they're touched together, or brought within a few centimeters to each other.It also specifies a way for the devices to establish a peer-to-peer network to exchange data. After the peer to peer network has been configured, another wireless communication technology, such as Bluetooth or Wi-Fi, can be used for longer-range communication or for transferring larger amounts of data.