Emissivityis a measure of how much thermal radiation a body emits to its environment. On the other hand we have that reflectivity is a measure of how much is reflected, and transmissivity is a measure of how much passes through the object. If a body is required to be ideally reflective to its maximum efficiency, the body should NOT have the property of transmissivity or emissivity. Therefore it should be 0 its emittivity.
Correct answer would be A : ZERO.
Answer:
- <u>77.8 m/s, downward</u>
Explanation:
For uniform acceleration motion, the average speed is equal to half the soum of the initial velocity, Vi, and the final velocity, Vf
- Average speed = (Vf + Vi)/2
Also, by definition, the average speed is the distance divided by the time:
- Average speed = distance / time
Then:
Other kinematic equation for uniform acceleration is:
Since the window is falling and the air resistance is ignored, a = g (gravitational acceleration ≈ 9.8m/s²)
Replacing the known values we can set a system of two equations:
From (Vf + Vi)/2 = 300m/6.62s
(Vf + Vi) = 2 × 300m/6.62s
- Vf + Vi = 90.634 equation 1
From Vf = Vi + a×t
Vf - Vi = 9.8 (6.62)
- Vf - Vi = 64.876 equation 2
Adding the two equations:
- Vf = 77.8 m/s downward (velocities must be reported with their directions)
Answer:
given , v = 300 km/hr; distance d = 1500 km; then time t = d/v = 1500/300 = 5 hrs
Explanation:
Complete Question
A gas gun uses high pressure gas tp accelerate projectile through the gun barrel.
If the acceleration of the projective is : a = c/s m/s2
Where c is a constant that depends on the initial gas pressure behind the projectile. The initial position of the projectile is s= 1.5m and the projectile is initially at rest. The projectile accelerates until it reaches the end of the barrel at s=3m. What is the value of the constant c such that the projectile leaves the barrel with velocity of 200m/s?
Answer:
The value of the constant is 
Explanation:
From the question we are told that
The acceleration is 
The initial position of the projectile is s= 1.5m
The final position of the projectile is 
The velocity is 
Generally 
and acceleration is 
so

=> 

integrating both sides

Now for the limit
a = 200 m/s
b = 0 m/s
c = s= 3 m
d =
= 1.5 m
So we have

![[\frac{v^2}{2} ] \left | 200} \atop {0}} \right. = c [ln s]\left | 3} \atop {1.5}} \right.](https://tex.z-dn.net/?f=%5B%5Cfrac%7Bv%5E2%7D%7B2%7D%20%5D%20%5Cleft%20%7C%20200%7D%20%5Catop%20%7B0%7D%7D%20%5Cright.%20%20%3D%20c%20%5Bln%20s%5D%5Cleft%20%7C%203%7D%20%5Catop%20%7B1.5%7D%7D%20%5Cright.)
![\frac{200^2}{2} = c ln[\frac{3}{1.5} ]](https://tex.z-dn.net/?f=%5Cfrac%7B200%5E2%7D%7B2%7D%20%20%3D%20%20c%20ln%5B%5Cfrac%7B3%7D%7B1.5%7D%20%5D)
=> 

The complete question is: A student draws a picture of the products and reactants of a chemical reaction. What, if anything, is wrong with the drawing?
A) The drawing is wrong because there are more chemicals on the products side.
B) The drawing is correct because there are 12 compounds on each side of the arrow.
C) The drawing is wrong because there are different compounds on each side of the arrow.
D) The drawing is correct because there are 12 atoms of each type on each side of the arrow.
Answer:
Option D is correct
Explanation:
In the diagram attached below, it can be seen that there are 12 atoms of element which combine with 12 atoms of another element forming a compound. For the drawing to be correct, there should be 12 atoms of each type of element on both the reactants as well as product side, which is the case. There cannot be imbalance in the number of atoms of different elements on the two sides for a chemical reaction to occur.
Hence, option D is correct.