Force required is 100 N
<u>Given that;</u>
Rate of acceleration = 5 m/s²
Mass of object = 20kg
<u>Find:</u>
Force required
<u>Computation:</u>
Force = Mass × Acceleration
Force required = Rate of acceleration × Mass of object
Force required = 20 × 5
Force required = 100 N
Learn more:
brainly.com/question/17506203?referrer=searchResults
Answer:
The answer is
<h2>270 m</h2>
Explanation:
To find the distance when given the velocity and time we use the formula
<h3>distance = velocity × time</h3>
From the question
velocity of the ball = 18 m/s
time = 15 s
So the distance is
distance = 18 × 15
We have the final answer as
<h3>270 m</h3>
Hope this helps you
Think of it like this, gravity has to pull harder on the heavier object to make them fall at the same rate , but doesn't have to pull as hard for the lighter object , thus is why sometimes heavier objects fall faster then lighter ones
Answer:
a) The magnitude of the magnetic field = 7.1 mT
b) The direction of the magnetic field is the +z direction.
Explanation:
The force, F on a current carrying wire of current I, and length, L, that passes through a magnetic field B at an angle θ to the flow of current is given by
F = (B)(I)(L) sin θ
F/L = (B)(I) sin θ
For this question,
(F/L) = 0.113 N/m
B = ?
I = 16.0 A
θ = 90°
0.113 = B × 16 × sin 90°
B = 0.113/16 = 0.0071 T = 7.1 mT
b) The direction of the magnetic field will be found using the right hand rule.
The right hand rule uses the first three fingers on the right hand (the thumb, the pointing finger and the middle finger) and it predicts correctly that for current carrying wires, the thumb is in the direction the wire is pushed (direction of the force; -y direction), the pointing finger is in the direction the current is flowing (+x direction), and the middle finger is in the direction of the magnetic field (hence, +z direction).
Answer:

Explanation:
q = Charge
r = Distance




The electric field is given by

The electric field at the aircraft is 