Momentum is a product mass and velocity. If a certain object posses a kinetic energy, then it should have a momentum since it is moving which has a velocity. However, if the object is at rest and only has potential energy, then it would not have momentum. So, for the first question the answer would be yes, an object can have energy without having any momentum. For the second question, every object whether it is moving or at rest, possess some energy, potential for an object at rest and kinetic for an object that is moving. Thus, the answer would be no, an object having momentum would always have energy.
Force]/[force] = Newon/Newton = 1
Answer:
Explanation:
Block A sits on block B and force is applied on block A . Block A will experience two forces 1) force P and 2 ) friction force in opposite direction of motion . Block B will experience one force that is force of friction in the direction of motion .
Let force on block A be P . friction force on it will be equal to kinetic friction, that is μ mg , where μ is coefficient of friction and m is mass of block A
friction force = .4 x 2.5 x 9.8
= 9.8 N
net force on block A = P - 9.8
acceleration = ( P - 9.8 ) / 2.5
force on block B = 9.8
acceleration = force / mass
= 9.8 / 6
for common acceleration
( P - 9.8 ) / 2.5 = 9.8 / 6
( P - 9.8 ) / 2.5 = 1.63333
P = 13.88 N .
<span>
D)
<span>
<span>
<span>
The average kinetic energy of the molecules that make up the solution also increases with increasing temperature. This increase in kinetic energy allows the solvent molecules to more effectively break apart the solute molecules that are held together by intermolecular attractions. </span></span></span></span>
Answer:
Geosphere
Explanation:
The Geosphere is the solid Earth,composed principally of rock (by which we mean any naturally formed, nonliving, firm coherent aggregate mass of solid matter that constitutes part of a planet).
The geosphere is defined to be that component of the Earth system involving the inside of the Earth, rocks and materials, minerals, land forms and the mechanisms that shape the surface of the Earth. Contrary to Christopher Columbus, the Earth is not in itself a perfect sphere.