Answer:

Explanation:
The force of gravity acting on the satellite is given by:

where
G is the gravitational constant
is the Earth's mass
m is the mass of the satellite
r is the distance of the satellite from the Earth's centre
Here we have
m = 700 kg

Substituting into the equation, we find:

<em>Note that the distance mentioned in the problem (2.4 x 10^6 meters) is not realistic, since it is less than the radius of the Earth (6.37 x 10^6 meters).</em>
GPE=mgh
=25 x 10 x 3
=750J
Answer:
0.64 m
Explanation:
The first thing is calculate the center of mass of the system.

now multiplying every coordinate x by the mass of each object (romeo, juliet and the boat) and dividing all by the total mass taking by reference the position of juliet.

X_cm = 1.4589 m
When the forces involved are internals, the center of mass don't change
After the movement the center of mass remains in the same distance from the shore, but change relative to the rear of the boat.

X_cm= 2.10 m
this displacement is how the boat move toward the shore.
2.10-1.46= 0.64 m
Answer:

Explanation:
The equivalent of Newton's second law for rotational motions is:

where
is the net torque applied to the object
I is the moment of inertia
is the angular acceleration
In this problem we have:
(net torque, with a negative sign since it is a friction torque, so it acts in the opposite direction as the motion)
is the moment of inertia
Solving for
, we find the angular acceleration:

The answer is A.Refraction