We would have the following sample space:
(1, 1), (1, 2), (1, 3), (1, 4)
(2, 1), (2, 2), (2, 3), (2, 4)
(3, 1), (3, 2), (3, 3), (3, 4)
(4, 1), (4, 2), (4, 3), (4, 4)
Those give us these sums:
2, 3, 4, 5
3, 4, 5, 6
4, 5, 6, 7
5, 6, 7, 8
P(sum of 2) = 1/16 =0.0625
P(sum of 3) = 2/16 = 0.125
P(sum of 4) = 3/16 = 0.1875
P(sum of 5) = 4/16 = 0.25
P(sum of 6) = 3/16 = 0.1875
P(sum of 7) = 2/16 = 0.125
P(sum of 8) = 1/16 = 0.0625
Answer:
<h2>$39,000</h2>
Step-by-step explanation:
Look at the picture.
To find the Median, place the numbers in value order and find the middle number (right picture).
Median = $39,000
Answer:
x=0.9
Step-by-step explanation:
(ask me if u want it)
Answer:
Expected number of hours before the the group exits the building = E[Number of hours] = 3.2 hours
Step-by-step explanation:
Expected value, E(X) is given as
E(X) = Σ xᵢpᵢ
xᵢ = each variable
pᵢ = probability of each variable
Let X represent the number of hours before exiting the building taking each door. Note that D = Door
D | X | P(X)
1 | 3.0 | 0.2
2 | 3.5 | 0.1
3 | 5.0 | 0.2
4 | 2.5 | 0.5
E(X) = (3×0.2) + (3.5×0.1) + (5×0.2) + (2.5×0.5) = 3.2 hours
Hope this Helps!!!
Solution:
<u>Note that:</u>
- Given inequality: 3 < x + 3 < 6
<u>Solving the inequality one by one.</u>
- 3 < x + 3
- => -3 + 3 < x
- => 0 < x
- => x + 3 < 6
- => x < 6 - 3
- => x < 3
The inequality is <u>0 < x < 3.</u>