No, gravity acts equally on all objects. The crumpled paper falls faster because it resists the drag force due to the atmosphere because of its compact size. A flat piece of paper has an extended body and "catches" the air and falls more slowly. In a vacuum they would fall at the same rate either way.
If you insert a crimp pin incorrectly, the ratcheted crimp tool will not sufficiently crimp the tabs. As a result, the wire may not fully conduct with the pin and the pin will be damaged.
<u>Explanation:</u>
The general theory for crimping all types of connectors is to strip a little bit of insulation off the wire. Then, put the connector into a suitably sized space in the jaws, insert the wire, and crimp it down. For non-ratcheting pliers, it's suggested the connector be re-crimped with the next smallest hole in the jaws.
A good crimp connection is gas tight and won't wick: it is sometimes referred to as a “cold weld”. Like the solder method, it can be used on solid or stranded conductors, and provides a good mechanical and electrical connection.
The kinetic energy of the bullet is 20.4 kJ.
<u>Explanation:</u>
Kinetic energy of a bullet will be equal to the product of mass of the bullet with the square of velocity or speed of the bullet and then the half of that product value.
But here the mass of the bullet is not given, instead the weight of the bullet is given in terms of force. So from this, we have to first find the mass of the bullet.
We know that as per Newton's second law of motion, force is directly proportional to the product of mass and acceleration. So here the acceleration will be equal to the acceleration due to gravity as it is weight of the object.
So F = mg
0.10 N = m × 9.8
So ,the mass of the bullet is 0.0102 kg.
Now, we know the mass and velocity of the bullet is given as 2000 m/s.
So,
kinetic energy =
× m × v²
kinetic energy = 0.5 × 0.0102 × 2000 × 2000 = 20.4 kJ
Thus, the kinetic energy of the bullet is 20.4 kJ.
<u>Answer:</u>
15.97 N force is tending to pull Rover forward
<u>Explanation:</u>
The woman pulls on the leash with a force of 20.0 N at an angle of 37° above the horizontal. The arrangement is shown in the given figure,
We nee to find the pulling force P. The 20.0 N force has two components, 20.0 cos 37 in horizontal direction and 20.0 sin 37 in vertical direction.
The horizontal component is equal to pulling force P, which will pull Rover forward/
So, P = 20.0 cos 37 = 15.97 N
15.97 N force is tending to pull Rover forward.
Answer:
the answer is c
Explanation:
because if the force of gravity increases its not gonna change its weight it will just float