Explanation:
The pH of a solution can you be found by using the formula
![pH = - log [ { H_3O}^{+}]](https://tex.z-dn.net/?f=pH%20%3D%20-%20log%20%5B%20%7B%20H_3O%7D%5E%7B%2B%7D%5D)
Since we are finding the [H3O+] , substitute the value of the pH and find it's antilog
We have
![4.63 = - log[ { H_3O}^{+}] \\ [ { H_3O}^{+}] = {10}^{ - 4.63} \\ \\ = 2.344 \times {10}^{ - 5} mol {dm}^{ - 3}](https://tex.z-dn.net/?f=4.63%20%3D%20%20-%20%20log%5B%20%7B%20H_3O%7D%5E%7B%2B%7D%5D%20%5C%5C%20%5B%20%7B%20H_3O%7D%5E%7B%2B%7D%5D%20%20%20%3D%20%20%7B10%7D%5E%7B%20-%204.63%7D%20%20%5C%5C%20%20%20%5C%5C%20%20%3D%202.344%20%5Ctimes%20%20%7B10%7D%5E%7B%20-%205%7D%20mol%20%7Bdm%7D%5E%7B%20-%203%7D%20%20)
Hope this helps you
Based on the data given, the energy required to remove an electron from a hydrogen atom in the n = 11 state is -0.112 eV
<h3>What is ionization energy?</h3>
Ionization energy is the energy requiredto remove an electron from a neutral atom or a cation in its gaseous state.
To calculate the energy required to remove the electron from a hydrogen atom in the n = 11 state, the formula below is used:
where

substituting the values:

Therefore, the energy required to remove an electron from a hydrogen atom in the n = 11 state is -0.112 eV
Learn more about ionization energy at: brainly.com/question/1445179
1) This type of energy transfer is called conduction.
2) Hydroelectricity
3) petroleum naphtha, gasoline, diesel fuel, asphalt base, heating oil, kerosene, liquefied petroleum gas, jet fuel and fuel oils. All of these come out of oil refining process
Hope this helped and plz mark as brainliest!
Answer:
Freezing point solution = 70.131 °C
Explanation:
Step 1: Data given
Molality = 1.468 molal
A solution is created by dissolving biphenyl (C12H10) into naphthalene
Biphenyl is a non-electrolyte
Freezing point of naphthalene = 80.26 °C
Step 2: Calculate the freezing point depression
ΔT = i*Kf*m
⇒with ΔT = the freezing point depression = TO BE DETERMINED
⇒with i = the van't Hoff factor of biphenyl = 1
⇒with Kf = the freezing point depression constant of naphthalene = 6.90 °C/m
⇒with m = the molality = 1.468 molal
ΔT = 1 * 6.90 °C/m * 1.468 °C
ΔT = 10.13 °C
Step 3: Calculate the freezing point of the solution
ΔT = 10.13 °C
Freezing point solution = freezing point naphthalene - 10.13 °C
Freezing point solution = 80.26 °C - 10.129 °C
Freezing point solution = 70.131 °C