The linear equation to model the company's monthly expenses is y = 2.5x + 3650
<em><u>Solution:</u></em>
Let "x" be the units produced in a month
It costs ABC electronics company $2.50 per unit to produce a part used in a popular brand of desktop computers.
Cost per unit = $ 2.50
The company has monthly operating expenses of $350 for utilities and $3300 for salaries
We have to write the linear equation
The linear equation to model the company's monthly expenses in the form of:
y = mx + b
Cost per unit = $ 2.50
Monthly Expenses = $ 350 for utilities and $ 3300 for salaries
Let "y" be the total monthly expenses per month
Then,
Total expenses = Cost per unit(number of units) + Monthly Expenses

Thus the linear equation to model the company's monthly expenses is y = 2.5x + 3650
Answer:
The length is equal to 12 and the width is equal to 6.
Step-by-step explanation:
In order to find the values here, we start by setting the width equal to x. Now knowing this, we know that the length is twice that long. Therefore, the length would be equal to 2x. Now we can use the perimeter formula to solve the equation.
2L + 2W = P
2(2x) + 2(x) = P
4x + 2x = 36
6x = 36
x = 6
Now with the given value for x, we can tell that the width is 6 and then we multiply it by 2 to get the length value (12).
Answer:
<em>− 2sin(b) / cos(2b)</em>
Step-by-step explanation:
DIFFERENTIATE W.R.T. B is a different method entirely
We simply add together the numerators and set with 2cos
then keep this number and add to sinb and square it.
then repeat initial 2 + cosb ^2 but instead of multiplying its add.
Then set the whole division to -sin (2b) squared then +1
<em> − 2cos(b)(3(sin(b))^2+(cos(b))^2) / −(sin(2b)) ^2 +1 </em>
Rewrite this symbolically: 6(2/6) = 12/6 = 2 (answer)
An equally good approach would be to cancel the 6's, obtaining 2 (answer)