Answer:
a)T total = 2*Voy/(g*sin( α ))
b)α = 0º , T total≅∞ (the particle, goes away horizontally indefinitely)
α = 90º, T total=2*Voy/g
Explanation:
Voy=Vo*sinα
- Time to reach the maximal height :
Kinematics equation: Vfy=Voy-at
a=g*sinα ; g is gravity
if Vfy=0 ⇒ t=T ; time to reach the maximal height
so:
0=Voy-g*sin( α )*T
T=Voy/(g*sin( α ))
- Time required to return to the starting point:
After the object reaches its maximum height, the object descends to the starting point, the time it descends is the same as the time it rises.
So T total= 2T = 2*Voy/(g*sin( α ))
The particle goes totally horizontal, goes away indefinitely
T total= 2*Voy/(g*sin( α )) ≅∞
T total=2*Voy/g
- Mass=m=142kg
- Acceleration=a=30m/s
- Force=F
Using Newton's second law



Answer:
7.08 m/s²
Explanation:
Given:
v₀ = 20.0 m/s
v = 105 m/s
t = 12.0 s
Find: a
v = at + v₀
105 m/s = a (12.0 s) + 20.0 m/s
a = 7.08 m/s²
Answer:
Option A.
A fan is turned from high speed to low speed.
Explanation:
It is important to note that air is also a fluid.
In a system, static pressure of air increases with the speed of rotation of the fan. This is because when the speed of the fan is increased, the force with which it is pushing the air molecules is increased. Since pressure is a relationship between force and area, the pressure of the air molecules will be increased.
Conversely, when the speed of the fan is reduced, the priming force on the air molecules will be reduced, hence the pressure of the air will drop.
This makes option A the correct option
Answer:
a) P =392.4[Pa]; b) F = 706.32[N]
Explanation:
With the input data of the problem we can calculate the area of the tank base
L = length = 10[m]
W = width = 18[cm] = 0.18[m]
A = W * L = 0.18*10
A = 1.8[m^2]
a)
Pressure can be calculated by knowing the density of the water and the height of the water column within the tank which is equal to h:
P = density * g *h
where:
density = 1000[kg/m^3]
g = gravity = 9.81[m/s^2]
h = heigth = 4[cm] = 0.04[m]
P = 1000*9.81*0.04
P = 392.4[Pa]
The force can be easily calculated knowing the relationship between pressure and force:
P = F/A
F = P*A
F = 392.4*1.8
F = 706.32[N]