Player 2 because moment is mass times acceleration and since they are all going the same speed. Speed doesn't matter so the only thing that is left is mass/ weight and he has the most
Answer:
14.2 m
Explanation:
Using conservation of energy:
PE at top = KE at bottom
mgh = ½ mv²
h = v² / (2g)
h = (16.7 m/s)² / (2 × 9.8 m/s²)
h = 14.2 m
Using kinematics:
Given:
v₀ = 16.7 m/s
v = 0 m/s
a = -9.8 m/s²
Find: Δy
v² = v₀² + 2aΔy
(0 m/s)² = (16.7 m/s)² + 2 (-9.8 m/s²) Δy
Δy = 14.2 m
Answer:
<h2>
3338.98 kg/m³</h2>
Explanation:
The formula for calculating the relative density of a substance is expressed as
Relative density of a liquid = Density of the liquid /density of water
Given relative density of a liquid = 0.34
Density of water 997kg/m³
Substituting into the formula we have;
Density of the liquid = Relative density of a liquid * density of water
Density of the liquid = 0.34 * 997
Density of the liquid = 3338.98 kg/m³
The magnitude of vector b is 8.58 Unit.
Since both the vectors a and b are perpendicular to each other, so we can apply the Pythagoras theorem to calculate the magnitude of the vector b.
Applying the Pythagoras theorem
(a-b)^2=a^2+b^2
15^2=12.3^2-b^2
b=8.58 unit
Therefor the magnitude of the vector b is 8.58 unit.
Frequency = 1/T
as the 5 is reduced, frequency is increase.
as 1 whole wave travels through a point in a lesser time now