Answer:
B) (-2.0 m, 0.0 m)
Explanation:
Given:
Mass of particle 1 is, 
Mass of particle 2 is, 
Position of center of mass is, 
Position of particle 1 is, 
Position of particle 2 is, 
We know that, the x-coordinate of center of mass of two particles is given as:

Plug in the values given.

We know that, the y-coordinate of center of mass of two particles is given as:

Plug in the values given.

Therefore, the position of particle 2 of mass 3.0 kg is (-2.0 m, 0.0 m).
So, option (B) is correct.
Answer:
The transverse wave will travel with a speed of 25.5 m/s along the cable.
Explanation:
let T = 2.96×10^4 N be the tension in in the steel cable, ρ = 7860 kg/m^3 is the density of the steel and A = 4.49×10^-3 m^2 be the cross-sectional area of the cable.
then, if V is the volume of the cable:
ρ = m/V
m = ρ×V
but V = A×L , where L is the length of the cable.
m = ρ×(A×L)
m/L = ρ×A
then the speed of the wave in the cable is given by:
v = √(T×L/m)
= √(T/A×ρ)
= √[2.96×10^4/(4.49×10^-3×7860)]
= 25.5 m/s
Therefore, the transverse wave will travel with a speed of 25.5 m/s along the cable.
You need to convert minutes to hours so
675g/cm³ is the density of the liquid
Here we have given that
density of wood be ρ.
the volume of the block be V
The volume of the block =1/4 v
The volume of the immersed block (v) =V-1/4V=3/4V
We know the weight of the block = the weight of the water displaced by the submerged part of the block.
i.e. V x ρ x g
= 3/4 x900g/cm³
= 675g/cm³
Density is a measure of mass divided by the volume of an object. Defined as mass per unit volume. here from the above equation we have substituted the given value and we got the answer as 675g/cm³
Learn more about Density here brainly.com/question/1354972
#SPJ9
Remember, half of the energy in an EM wave is in the E field, the rest is in the B field.
Thus, multiply E field energy by 2.
To calculate the energy of the wave you must then use the following equation: W = A*t*c*2*(1/2*E^2*Eo). Where, A = Area, t = time, c = speed of light (which is a constant), E = Electric field, E0 = vacuum permittivity (8.85*10^-12 Nm^2/C^2). Substituting W =(0.320)*(26)*(3*10^8)*(2)*((1/2)*(1.95*10^-2)^2*(8.854*10^-12)) = 8.40*10^-6 J