A.) For letter a, we use the law of universal gravitation using the constant G = 6.674×10−<span>11 m3</span>⋅kg−1⋅s−<span>2
Grav. F = G*m1*m2*(1/d^2)
m1 is mass of electron = </span>9.11 × 10-31<span> kg
m2 is mass of proton = </span>1.67 × 10<span>-27 kg
d = 4.5 nm = 4.5 x 10^-9 m
Grav F = 5.01 x 10^-51 N
b.) </span>For letter b, we use the Coulomb's using the constant k = 9×10^9 N
Electric force = k*Q1*Q2*(1/d^2)
Q1 is charge of electron = -1.6 × 10-19 C
Q2 is charge of proton = +1.6 × 10-19 C
Electric force = 1.14 x 10^-11 N
Answer:
The center of mass of the two-block system is staying the same and it can be explained with the help of linear momentum equation.
Explanation:
The center of mass of the two-block system is staying the same and it can be explained with the help of linear momentum equation.
Equation:
P=mv
This equation holds if no external force is acting on the system it means the momentum of the system is constant.
In our case, there is no external force which means the total momentum of system is constant:
P=constant
Total mass of system is also constant:
m=constant
It means the velocity of the system is constant (from above equation) thus center of mass of the two-block system is staying the same
If the light of wavelength 700 nm strikes such a photocathode the maximum kinetic energy, in eV, of the emitted electrons is 0.558 eV.
so - $KE_{max} = hc/lembda} work
threshold when KE = 0
hc/lambda = work = 1240/900=1.38 eV
b) Kemax = hc/lambda - work = 1240/640 -1.38=0.558 eV
What is photocathode?
- A photocathode electrolyte interface can be used in a photoelectrolysis cell as the primary light-harvesting junction (in conjunction with an appropriate electrochemical anode) or as an optically complementary photoactive half-cell in a tandem photoelectrode photoelectrolysis cell (Hamnett, 1982; Kocha et al, 1994).
- In the case of the former, the electrode should ideally harvest photon energy across the majority of the solar spectrum in order to achieve the highest energy conversion efficiency possible.
- In the latter case, however, the photocathode may only be active in a specific band of the solar spectrum in order to generate a cathodic photocurrent sufficient to match the current generated in the photoanodic half-cell.
To learn more about Photocathode from the given link:
brainly.com/question/9861585
#SPJ4
Answer:
The answer is based on the conservation of energy law; something you should really understand by now.
For convenience we can hold one of the two charges still; it becomes the frame of reference. And everything we say is in reference to the designated static charge, call it Q.
So the moving charge, call it q, has total energy TE = PE. It's all potential energy as we start with q not moving.
It has potential energy because in order to separate q from Q, we had to do work, add energy, on q. And from the COE law, that work added is converted into PE.
It's a bit like lifting something off the ground. That's work and it becomes GPE. So there's some work, in separating the two charges in the first place.
But there's more.
Now we let q go. As opposites attract, q is pulled to Q. And that force from Q is working on q, force over distance. Which means the potential energy q started with is being converted into kinetic energy. q is accelerating and picking up speed.
And there's more work, done by the EMF on charge q. That converts the PE into KE and the q charge smashes into Q with some kinetic energy.
Answer:
4) Driving in a straight line at 60 miles per hour
Explanation:
1) Driving 60 miles per hour around a curve
2) Going from 0 to 60 miles per hour in 10 seconds
3) Slamming on the brakes to come to a stop at a stop sign
4) Driving in a straight line at 60 miles per hour
1) The speed is constant here, but in circular motion you have an acceleration that is v^2/r, where v is the speed and r the radius
2) You are accelerating from 0 to 60
3) You are desaccelerating
4) constant speed , no acceleration