B: asking questions
(Hope this helps)
Question :
If a body acquires a charge of -0.02 C, has it gained or lost electrons? Many?
Solution :
We know, charge gained is shown by negative sign.
Since, charged acquired is given as -0.02 C .
Therefore, it is body has gained electrons.
Now, number of electrons is given by :

Hence, this is the required solution.
Player A needs the least amount of energy. The ball is light weight and she is closest to the goal so the momentum need to kick the ball will be the least and the distance is has to travel is the shortest. But player C needs the most amount of energy. The ball is heavy so it will take the most momentum to move the ball and over such a long distance. Hope this help idrk.
Answer:
1.785 m/s
Explanation:
The momentum can be calculated using the expression below
M1 *V1 + M2 * V2 = (M1+M2) V3
M1= mass of van=9000 kg
M2= mass of car= 850kg
V3= velocity of entangled car
V1= Velocity of the van= 0
V2= velocity of the car= 5 m/ s
Substitute the values
(900×0) + (500×5)=( 900+500)× V3
2500=1400 V3
V3=2500/1400
V3= 1.785 m/s
Hence, velocity of the entangled cars after collision is 1.785 m/s
Answer:
See the answer below
Explanation:
The optimal conditions for high biodiversity seem to be a <u>warm temperature</u> and <u>wet climates</u>.
<em>The tropical areas of the world have the highest biodiversity and are characterized by an average annual temperature of above 18 </em>
<em> and annual precipitation of 262 cm. The areas are referred to as the world's biodiversity hotspots. </em>
Consequently, it follows logically that the optimal conditions for high biodiversity would be a warm temperature of above 18
and wet environment with annual precipitation of not less than 262 cm.
The variation in temperature and precipitation across biomes can thus be said to be responsible for the variation in the level of biodiversity in them.