1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Oxana [17]
3 years ago
6

At NASA's Zero Gravity Research Facility in Cleveland, Ohio, experimental payloads fall freely from rest in an evacuated vertica

l
shaft through a distance of 132 m.
(a) If a particular payload has a mass of 50 kg, what is its potential energy relative to the bottom of the shaft?
(b) How fast will the payload be traveling when it reaches the bottom of the shaft?
m/s
(c) Convert your answer to mph for a comparison to highway speeds.
mph​
Physics
1 answer:
Diano4ka-milaya [45]3 years ago
5 0

Answer:

(a). Energy is 64,680 J

(b) velocity is 51.43m/s

(c) velocity in mph is 115.0mph

Explanation:

(a).

The potential energy P of the payload of mass m is at a vertical distance h is  

P =mgh.

Therefore, for the payload of mass m = 50kg at a vertical distance of h = 132 m, the potential energy is

P = (50kg)(9.8m/s^2)(132m)

\boxed{P = 64,680J}

(b).

When the payload reaches the bottom of the shaft, all of its potential energy is converted into its kinetic energy; therefore,

mgh= \dfrac{1}{2}mv^2

v= \sqrt{2gh}

v = \sqrt{2*9.8*135}

\boxed{v = 51.43m/s}

(c).

The velocity in mph is

\dfrac{51.43m}{s} * \dfrac{3600s}{hr} * \dfrac{1mile}{1609.34m}

\boxed{v= 115.0mph}

You might be interested in
Even in the most advanced circuits, we cannot oscillate electrons back and forth at that rate through wires. But we can oscillat
den301095 [7]

Answer:

the oscillations of the electrons must be in the 10⁸ Hz = 100 MHz range

Explanation:

The speed of a wave of radio, television, light, heat, all are manifestations of electromagnetic waves that are oscillations of electric and magnetic fields that support each other, the speed of all these waves is the same and the vacuum is equal to c = 3 108 m / s

All waves have a relationship between the speed of the wave, its frequency and wavelength

          c = λ f

          f = c /λ

for this case lam = 1 m

          f = 3 10⁸/1

          f = 3 10⁸ Hz

the oscillations of the electrons must be in the MHz range

It should be clarified that the speed of light in air is a little lower

          n = c / v

          v = c / n

the refractive index of vacuum is n = 1 and the refractive index of air is n = 1.000002

5 0
3 years ago
1. I’m in the 2nd column, 4th row, and I’m a metal. Who am I? ________________ 2. I’m a very lonely nonmetal. Who am I? ________
Ghella [55]

Answer:

Explanation:

I'm in 17th column , a nometal, and a solid at room temperature. What am i

6 0
3 years ago
Which of the following is represented by the letter A in the diagram below?
Kruka [31]

We have that the letter A in the diagram below given as

Amplitude

Option A

<h3>Amplitude</h3>

Question Parameters:

Amplitude

Crest

Trough

Wavelength

Generally, the amplitude of a wave is the maximum  displacement of the wave in the medium from its initial position.

Amplitude is denoted with the letter A

Therefore,Amplitude

Option A

For more information on displacement visit

brainly.com/question/989117

6 0
2 years ago
A 400g sample of water absorbs 500j of energy. how did the water temperature change if the specific heat of water is 4.18j/g©. S
Mashutka [201]

In general, the quantity of heat energy, Q, required to raise a mass m kg of a substance with a specific heat capacity of <span>c </span>J/(kg °C), from temperature t1 °C to t2 °C is given by:

<span>Q </span>= <span>mc(t</span><span>2 </span><span>– t</span>1<span>) joules</span>

<span>So:</span>

(t2-t1) =Q / mc

<span>As we know:
Q = 500 J </span>

<span>m = 0.4 kg</span>

<span>c = 4180 J/Kg </span>°c

<span>We can take t1 to be 0</span>°c

t2 - 0 = 500 / ( 0.4 * 4180 )

t2 - 0 = 0.30°c

6 0
3 years ago
A motor-driven winch pulls a 50.0 kg student 5.00 m up the rope at a constant speed of 1.25 m/s. how much power does the motor u
nadya68 [22]
Power is the rate work done given by dividing work done by unit time. It is measured in watts equivalent to J/s.
In this case the force by the student is mg = 490 N (taking g as 9.8m/s²)
Work done is given by force × distance,
Therefore, Power =(force × distance)/ time, but velocity/speed =distance/time
Thus, Power = force × speed/velocity
                     = 490 N × 1.25
                     = 612.5 J/S (Watts)
Hence, power will be 612.5 Watts.
7 0
3 years ago
Other questions:
  • A spherical balloon is 40 ft in diameter and surrounded by air at 60°F and 29.92 in Hg abs.(a) If the balloon is filled with hyd
    6·2 answers
  • A girl picks up a bag of apples that are at rest on the floor. How dose the force the girl applies compare to the force of gravi
    6·1 answer
  • A sled is accelerating down a hill at a rate of 1 m s2 . If the mass of the sled is suddenly cut in half and the net force on th
    7·1 answer
  • What kind of wave is being generated?
    5·2 answers
  • Calculate the power developed in a 6.0o resistor with a potential drop of 12 volts.
    6·2 answers
  • Anna applies a force of 19.5 newtons to push a book placed on a table. If the normal force of the book is 51.7 newtons, what is
    10·2 answers
  • Define , gravitational acceleration
    15·1 answer
  • Jenise is buying a car for $7,020. The TAVT rate is 9.1%.
    12·1 answer
  • Define Stokes law??<br><br><br><br>bored...........anyone free​
    13·2 answers
  • How does the time of flight differ between an object launched from a height parallel to ground and an object launched from the g
    6·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!