The legend is that he discovered gravity when an apple feel on his head. I don’t know what the true story is, but that’s what I’ve heard so maybe A??
Although, I’m pretty sure it could also be C
So... between A and C, however, I don’t want you to get it wrong so I would recommend getting another opinion
Hope this helps!
Answer:
Power factor = 0.87 (Approx)
Explanation:
Given:
Load = 1 Kw = 1000 watt
Current (I) = 5 A
Supply (V) = 230 V
Find:
Power factor.
Computation:
Power factor = watts / (V)(I)
Power factor = 1,000 / (230)(5)
Power factor = 1,000 / (1,150)
Power factor = 0.8695
Power factor = 0.87 (Approx)
Answer:
Usually the coefficient of friction remains unchanged
Explanation:
The coefficient of friction should in the majority of cases, remain constant no matter what your normal force is. When you apply a greater normal force, the frictional force increases, and your coefficient of friction stays the same. Here's another way to think about it: because the force of friction is equal to the normal force times the coefficient of friction, friction is increased when normal force is increased.
Plus, the coefficient of friction is a property of the materials being "rubbed", and this property usually does not depend on the normal force.
Answer:
what is this a riddle lol it breaks when he either jumps or lands
Explanation:
Answer:
There would be complete destructive interference.
Explanation:
This is because since the waves are completely out of phase, the phase difference is half wavelength, that is the phase angle is 180°. The vibrating sources are 180° out of phase with each other.
Since this is the case, the crest of the one source meets the trough of the other, this causes the resultant vibrational wave to cancel out, thus producing a destructive interference pattern.
Since the vibrating sources are completely out of phase, every point they meet is completely out of phase, so the resultant interference pattern would produce a complete destructive interference pattern of no wave.