<span>brains need to be flexible because if they weren't we would never be able to increase our intellect. human beings are more flexible intellectually because we can turn our hands to more complex things and have the ability to learn better.</span>
Answer:
The portfolio should invest 48.94% in equity while 51.05% in the T-bills.
Explanation:
As the complete question is not given here ,the table of data is missing which is as attached herewith.
From the maximized equation of the utility function it is evident that
For the equity, here as
- is percentage of the equity which is to be calculated
- is the Risk premium whose value as seen from the attached data for the period 1926-2015 is 8.30%
- is the risk aversion factor which is given as 4.
- is the standard deviation of the portfolio which from the data for the period 1926-2015 is 20.59
By substituting values.
So the weight of equity is 48.94%.
Now the weight of T bills is given as
So the weight of T-bills is 51.05%.
The portfolio should invest 48.94% in equity while 51.05% in the T-bills.
Explanation:
If the stones are unloaded from the boat, the weight of the boat will decrease. Therefore, the volume of the water displaced by the boat will also decrease. Due to this, the volume of the boat immersed in the water decreases. Hence, the level of the water around the boat will decrease.
Answer:
0.04225 Nm
Explanation:
N = Force applied = 5 N
= Coefficient of static friction = 0.65
d = Diameter of knob = 1.3 cm
r = Radius of knob =
Force is given by
When we multiply force and radius we get torque
Torque on thumb
Torque on forefinger
The total torque is given by
The most torque that exerted on the knob is 0.04225 Nm
Answer:
145 m
Explanation:
Given:
Wavelength (λ) = 2.9 m
we know,
c = f × λ
where,
c = speed of light ; 3.0 x 10⁸ m/s
f = frequency
thus,
substituting the values in the equation we get,
f = 1.03 x 10⁸Hz
Now,
The time period (T) =
or
T = = 9.6 x 10⁻⁹ seconds
thus,
the time interval of one pulse = 100T = 9.6 x 10⁻⁷ s
Time between pulses = (100T×10) = 9.6 x 10⁻⁶ s
Now,
For radar to detect the object the pulse must hit the object and come back to the detector.
Hence, the shortest distance will be half the distance travelled by the pulse back and forth.
Distance = speed × time = 3 x 10^8 m/s × 9.6 x 10⁻⁷ s) = 290 m {Back and forth}
Thus, the minimum distance to target = = 145 m