<h3>
Answer:</h3>
5.395 × 10^8 Watts
<h3>
Explanation:</h3>
<u>We are given;</u>
- Rate of flow is 1.1 × 10^6 kg/s
- Distance is 50.0 m
- Gravitational acceleration is 9.8 m/s²
We are required to calculate the power that is generated by the falling water
- Power is the rate of work done
- It is given by dividing the energy or work done by time
But; work done = Force × distance
Therefore;
Power = (F × d) ÷ time
The rate is 1.1 × 10^ 6 Kg/s
But, 1 kg = 9.81 N
Therefore, the rate is equivalent to 1.079 × 10^7 N/s
Thus,
Power = Rate (N/s) × distance
= 1.079 × 10^7 N/s × 50.0 m
= 5.395 × 10^8 Watts
The power generated from the falling water is 5.395 × 10^8 Watts
Answer:
Explanation:
The movement of a body can be analyzed using New's first law. In an inertial frame (without acceleration) every body is kept at rest or moving at constant speed until there is an external force that changes this state
Let's analyze these cases in the framework of this first law
a) If the vehicle is going at constant speed the two bodies (the egg and the hands) do not change movement so he had returned to the hands
b) If the vehicle accelerates the passenger goes faster, but the egg that is not subject to anything does not change the movement, so it falls behind the passenger
c) If the vehicle slows down, the passenger reduces its speed and the distance traveled in time, but the egg that is not attached follows its movement and falls in front of the passenger.
You measure the open distance between the floor and the bottom surface of the gas pedal. Then you press the gas pedal down 1/2 of that distance.
Answer:
Explanation:
Given
mass of bus along with travelers travelling in North direction is 
speed of bus towards North 
mass of bus travelling in South direction is 
speed of bus 
mass of each Passenger in south moving bus 
Momentum of North moving bus



Momentum with south moving bus


For total momentum to be towards south
should be greater than 0
thus for least value of n


