Answer:
Capacitance of cylindrical capacitor does not depends on the amount of charge on the conductors
Explanation:
Consider a cylindrical capacitor of length L, inner radius R₁ and outer radius R₂, permitivity ε₀ constant then capacitance of cylindrical capacitor is given by:
From this equation it is clear that capacitance of cylindrical capacitor is independent of the amount of charge on the conductors where as directly proportional permitivity constant and length of cylinder where as inversely proportional to natural log of ratio of R₂ and R₁
You are running at constant velocity in the x direction, and based on the 2D definition of projectile motion, Vx=Vxo. In other words, your velocity in the x direction is equal to the starting velocity in the x direction. Let's say the total distance in the x direction that you run to catch your own ball is D (assuming you have actual values for Vx and D). You can then use the range equation, D= (2VoxVoy)/g, to find the initial y velocity, Voy. g is gravitational acceleration, -9.8m/s^2. Now you know how far to run (D), where you will catch the ball (xo+D), and the initial x and y velocities you should be throwing the ball at, but to find the initial velocity vector itself (x and y are only the components), you use the pythagorean theorem to solve for the hypotenuse. Because you know all three sides of the triangle, you can also solve for the angle you should throw the ball at, as that is simply arctan(y/x).
Answer:
Welcome ShalomMHNCB Phx
Explanation:
the answer is because I just had this question and I got it wrong so te answer is 0.43
Power = Current² * Resistance
Power = 2² * 4
= 4 * 4
Power = 16 Watts
d = distance = 0.76 m <span>
<span>a = acceleration due to gravity = 9.81 m/s^2</span>
u = initial velocity = 0 (as the ball rolls off the table the
vertical velocity = 0
t = time = missing so we need to solve it
So we use the equation d = ut + 1/2 at², and ever since u is
zero, ut is zero and the equation becomes to d = 1/2 at² and this reorders to t
= sqrt (2d/a) = 0.39 seconds.
Since there are no forces performing in the horizontal
direction, this means that there is no acceleration in the horizontal direction
and consequently the horizontal velocity is persistent. </span>
Velocity = distance/
time.
Horizontal velocity is
therefore horizontal distance/time = 0.61 m/0.39s = 1.56 m/s.
<span> </span>