Answer:
Zero work done,since the body isn't acting against or by gravity.
Explanation:
Gravitational force is usually considered as work done against gravity (-ve) and work by gravity ( +ve ) and also When work isn't done by or against gravity work done in this case is zero.
Gravitational force can be define as that force that attracts a body to any other phyical body or system that have mass.
The planet been considered as our system in this case is assumed to have mass, and ought to demonstrate such properties associated with gravitational force in such system. Such properties include the return of every object been thrown up as a result of gravity acting downwards. The orbiting nature of object along an elliptical part when gravitational force isn't acting on the body and it is assumed to be zero.
Explanation:
Doing homework is risky behaviour broo
Answer:
Both eggs are identical. The aim is to find out the highest floor from which an egg will not break when dropped out of a window from that floor. If an egg is dropped and does not break, it is undamaged and can be dropped again. However, once an egg is broken, that's it for that egg.
Answer:
Calculating Coefficient of friction is 0.229.
Force is 4.5 N that keep the block moving at a constant speed.
Explanation:
We know that speed expression is as
.
Where,
is initial speed, V is final speed, ∆s displacement and a acceleration.
Given that,
=3 m/s, V = 0 m/s, and ∆s = 2 m
Substitute the values in the above formula,

0 = 9 - 4a
4a = 9

is the acceleration.
Calculating Coefficient of friction:


Compare the above equation

Cancel "m" common term in both L.H.S and R.H.S





Hence coefficient of friction is 0.229.
calculating force:


F = 4.5 N
Therefore, the force would be <u>4.5 N</u> to keep the block moving at a constant speed across the floor.
Answer:
Subtract the kinetic energy at the bottom from the potential energy loss. The remainder becomes frictional heat.
Potential energy loss:
M g H = 21.7*9.81*3.5 = 745.1 J
Kinetic energy at bottom of slide:
= (1/2) M v^2 = 52.5 J