Something made of pure iron<span> is softer </span>than steel<span> because the atoms can slip over one another. If other atoms like carbon are added, they are different from </span>iron<span> atoms and stop the </span>iron<span> atoms from sliding apart so easily. This makes the metal </span>stronger<span> and </span>harder<span>.</span>
The type of equipment that would be used to precisely measure 26.0 mL of dilute hydrochloric acid would be C. 50 mL graduated cylinder.
D doesn't have enough mLs to measure this, and A and B have too many.
The reaction between mercury (Hg) and sulfur (S) to form HgS is:
Hg + S ------------- HgS
Therefore: 1 mole of Hg reacts with 1 mole of S to form 1 mole of HgS
The given mass of Hg = 246 g
Atomic mass of Hg = 200.59 g/mol
# moles of Hg = 246 g/ 200.59 gmol-1 = 1.226 moles
Based on the reaction stoichiometry,
# moles of S that would react = 1.226 moles
Atomic mass of S = 32 g/mol
Therefore, mass of S = 1.226 moles*32 g/mole = 39.23 g
39.2 g of sulfur would be needed to react completely with 246 g of Hg to produce HgS
Hello!
The reaction that the graph represents is
A. Exothermic because Hrxn=-167 kJTo calculate Hrxn we apply the following equation:

Looking at the graph, and at the result of the calculations, we can see that the enthalpy of the products is
lower than the enthalpy of the reagents, because the sign is negative. That means that the reaction
releases energy in the form of heat and that the reaction is
exothermic.
Have a nice day!
Answer:
the relation of two different forms of the same substance (such as two allotropic forms of tin) that have a definite transition point and can therefore change reversibly each into the other — compare monotropy.