We are given the amount of Nitrogen gas and hydrogen gas reacted to form ammonia:
N2 = 19.25 grams
H2 = 11.35 grams
Set-up a balanced chemical equation:
N2 + 3H2 ==> 2NH3
The theoretical amount of ammonia that will be produced from the given amounts is:
First, we need to determine the limiting reactant to serve as our basis for calculation.
number of moles / stoichiometric ratio
N2 = 19.25 g/ 28 g/mol / 1 = 0.6875
H2 = 11.35 g/ 2 g/mol /3 = 1.89
The limiting reactant is N2.
0.6875 moles N2 * (2 NH3/ 1 N2) * 17 g/mol NH3
The amount of NH3 produced is 23.375 grams of ammonia. <span />
Answer:
8) 45 volt
9) 8 ohms
100 volt
Explanation:
using ohms law all through
8) v = 3×15
9) R= 120/15
the last V=100×1
<span>Both are composed of two elements (that means binary).
Ionic is composed of two ions, metallic cation-positive ions, and nonmetallic anion - negative ions. For example NaCl (sodium-chloride).
Molecular compounds are composed of two nonmetallic elements. For example HCl (hydrochloric acid).</span>
The balanced equation for the above reaction is as follows
C₆H₁₂O₆(s) + 6O₂(g) --> 6H₂O(g) + 6CO₂<span>(g)
the limiting reactant in the equation is glucose as the whole amount of glucose is used up in the reaction.
the amount of </span>C₆H₁₂O₆ used up - 13.2 g
the number of moles reacted - 13.2 g/ 180 g/mol = 0.073 mol
stoichiometry of glucose to CO₂ - 1:6
then number of CO₂ moles are - 0.073 mol x 6 = 0.44 mol
As mentioned this reaction takes place at standard temperature and pressure conditions,
At STP 1 mol of any gas occupies 22.4 L
Therefore 0.44 mol of CO₂ occupies 22.4 L/mol x 0.44 mol = 9.8 rounded off - 10.0 L
Answer is B) 10.0 L CO₂