Answer:
To understand the utility in sequence comparison and in the search for proteins that have a common evolutionary origin, you need to be clear about some concepts about how to evolve proteins. The idea that is accepted is that throughout the evolution some species are giving rise to new ones. Behind this is the genetic variation of organisms, that is, the evolution of genomes and their genes, as well as the proteins encoded by them.
Explanation:
Three ways can be distinguished by which genes evolve, and by proteins: mutation, duplication and shuffling of domains. When differences between homologous protein sequences are observed, these differences change to do with the way of life of the organism, an example of this, bacteria that live in hot springs at very high temperatures have proteins with a very high denaturation temperature, and these proteins are usually richer in cysteines. On the other hand, the fact that in positions of the sequences they remain unchanged (preserved positions), means that these have a special importance for the maintenance of the structure or function of the protein and its modification has not been tolerated throughout of evolution
<span>50.2 kJ = 333 kJ/kg * mass of water
mass of water is 0.15075075075075075075075075075075 kg
therefore mass of unfrozen water is 0.10924924924924924924924924924925 kg</span>
Answer: 4.56 Joules
Explanation:-
The quantity of heat required to raise the temperature of a substance by one degree Celsius is called the specific heat capacity.

Q = Heat absorbed = ?
m= mass of substance = 2.5 g
c = specific heat capacity = 
Initial temperature =
= 25.0°C
Final temperature =
= 29.9°C
Change in temperature ,
Putting in the values, we get:


The heat absorbed by gallium must be 4.56 Joules
I think the answer is D no change. Though you add more CO2, but the pressure is not mentioned. If the pressure is constant and the reaction is already balanced, the H2O is also saturation and can not absorb more CO2.
The mass of lime that can be produced from 4.510 Kg of limestone is calculated as below
calculate the moles of CaCO3 used
that is moles =mass/molar mass
convert Kg to g = 4.510 x1000 =4510g
= 4510 / 100 =45.10 moles
CaCO3 = CaO +O2
by use of mole ratio between CaCO3 to CaO (1:1) the moles of CaO is also= 45.10 moles
mass of CaO = moles x molar mass
45.10 x56 = 2525.6 g of CaO