The answer is 1.56L. Avogadro's Law states that the volume of a gas is directly proportional to the number of moles (or a number of particles) of gas when the temperature and pressure are held constant.
V∝n
V₁/n₁m= V₂/n₂
V₁ = initial volume of gas = 12.5 L
V₂ = final volume of gas = ?
n₁ = initial moles of gas = 0.016 mole
n₂ = final moles of gas = 0.016-0.007 = 0.002 mole
V₁/n₁m= V₂/n₂
V₂= 1.56L
Avogadro's Law is in evidence whenever you blow up a balloon. The volume of the balloon increases as you add moles of gas to the balloon by blowing it up.
Learn more about Volume here:
brainly.com/question/5018408
#SPJ4
Answer:
So the asnwer is 66666666666666666666666666666666666666666666666666666666666666666666666666666666666668888844444444444444444443299997832........................................................4563ygfdjuzgu3456655555555555555555555553444446445444444555554
Explanation:
Answer:
Explanation:
Density is m/V. Also, 1 liter = 1000
. So, we get 0.890/(5*1000) =
g/cm^3. You can convert this to kg/m^3 as well by multiplying it by 10. Depends which one you want.
Inclined planes reduce the amount of effort needed to move an object, but increases the length of the ramp.
<u>Explanation:</u>
Mechanical advantage is the measure of amount of effort needed to move an object. The mechanical advantage can be calculated as the ratio of length of ramp to the height of ramp for an inclined plane.
As it is known that an object can be easily moved on an inclined plane than on a vertical plane, this is because, the inclined plane provides greater output force. But in that case, the effort required will be reduced with the cost of increasing the distance of the movement of object.
In other terms , the ramp's length of inclined planes has to get increased in order to reduce the amount of effort needed to move an object. This is because as the mechanical advantage has length of the ramp in the numerator, with the increase in numerator value or length value the mechanical advantage will also increase.