Answer:
117 square yards.
Step-by-step explanation:
Given:
Length of garden = 234 yards
Breadth of garden = 1 yard
She grows roses 1/2 of her garden.
Question asked:
How many square yards are Gini's garden has roses ?
Solution:
First of all we will find area of rectangular garden.


Then, as here given half of garden, she grows roses, we will find half of the
rectangular garden.

Therefore, 117 square yards of her garden has roses.
Answer:
Step-by-step explanation:
The genral form of a complex number in rectangular plane is expressed as z = x+iy
In polar coordinate, z =rcos ∅+irsin∅ where;
r is the modulus = √x²+y²
∅ is teh argument = arctan y/x
Given thr complex number z = 6+6√(3)i
r = √6²+(6√3)²
r = √36+108
r = √144
r = 12
∅ = arctan 6√3/6
∅ = arctan √3
∅ = 60°
In polar form, z = 12(cos60°+isin60°)
z = 12(cosπ/3+isinπ/3)
To get the fourth root of the equation, we will use the de moivres theorem; zⁿ = rⁿ(cosn∅+isinn∅)
z^1/4 = 12^1/4(cosπ/12+isinπ/12)
When n = 1;
z1 = 12^1/4(cosπ/3+isinn/3)
z1 = 12^1/4cis(π/3)
when n = 2;
z2 = 12^1/4(cos2π/3+isin2π/3)
z2 = 12^1/4cis(2π/3)
when n = 3;
z2 = 12^1/4(cosπ+isinπ)
z2 = 12^1/4cis(π)
when n = 4;
z2 = 12^1/4(cos4π/3+isin4π/3)
z2 = 12^1/4cis(4π/3)
Answer:
Binomial
There is a 34.87% probability that you will encounter neither of the defective copies among the 10 you examine.
Step-by-step explanation:
For each copy of the document, there are only two possible outcomes. Either it is defective, or it is not. This means that we can solve this problem using the binomial probability distribution.
Binomial probability distribution:
The binomial probability is the probability of exactly x successes on n repeated trials, and X can only have two outcomes.

In which
is the number of different combinatios of x objects from a set of n elements, given by the following formula.

And p is the probability of X happening.
In this problem
Of the 20 copies, 2 are defective, so
.
What is the probability that you will encounter neither of the defective copies among the 10 you examine?
This is P(X = 0) when
.


There is a 34.87% probability that you will encounter neither of the defective copies among the 10 you examine.
Set the argument (x+1) equal to zero.