A, 40 degrees. Reflexion laws state that both incidence and reflection angles are the same.
Answer
given,
mass of the = m₁ = 8.75 Kg
another mass of the object = m₂ = 14 Kg
distance between them = 50 cm
R₁ = 17 cm
R₂ = 50 -17 = 33 cm
a) Force applied due to the Mass 8.75 in +ve x- direction



Force applied due to mass 14 Kg in -ve x-direction



net force
F = F₁ + F₂


Using newton second law



b) As the acceleration of mass comes out to be +ve hence, the direction will be toward the mass of 8.75 Kg
Answer:
K_{total} = 19.4 J
Explanation:
The total kinetic energy that is formed by the linear part and the rotational part is requested

let's look for each energy
linear
= ½ m v²
rotation
= ½ I w²
the moment of inertia of a solid sphere is
I = 2/5 m r²
we substitute
= ½ mv² + ½ I w²
angular and linear velocity are related
v = w r
we substitute
K_{total} = ½ m w² r² + ½ (2/5 m r²) w²
K_{total} = m w² r² (½ + 1/5)
K_{total} =
m w² r²
let's calculate
K_{total} =
6.40 16.0² 0.130²
K_{total} = 19.4 J
Answer:
80.17 cm
Explanation:
Taking moments of forces about the center, the total clockwise moments is equal to the total counter clockwise moment:
Force * distance (counter clockwise) = force * distance (clockwise)
0.24 * 9.8 * (50 - 6) = 0.35 * 9.8 * (x - 50)
0.24 * 44 = 3.43x - 171.5
103.5 = 3.43x - 171.5
=> 3.43x = 103.5 + 171.5
3.43x = 275
x = 275/3.43 = 80.17 cm
The force exerted by the person is 600 N because to find the original force you would add back 100 from friction