<span>T(t)=60+140<span>e<span>−0.075t</span></span></span>
<span>T(12)=60+140<span>e<span>−0.075∗12</span></span></span>
<span>T(12)=60+140<span>e<span>−0.9</span></span></span>
<span><span>T(12)=60+140(0.4065696597)
=116.84
So the temperature will be approximately 117 degrees</span></span>
Water as it's the highest specific heat capacity
Hope this helps x
The answer is c: <span>1960 J
</span>Potential Energy :
<span>PE = m x g x h = 40*9.8*5=1960
</span>
<h3>16.</h3>
Your answer is correct.
___
<h3>17.</h3>
The fractional change in resistance is equal to the given temperature coefficient multiplied by the change in temperature.
R = R₀×(1 + α×ΔT)
R = (10.0 Ω)×(1 + 0.004×(65 -20)) = 11.8 Ω
This happens in basketball. It is known as "jump ball".