What ever your demcial is move it to the left twice until there is no demcial like 9.8 move twice 980
Answer:
28.2
Explanation:
Add all of the pressures, 55, 90, and 50, and divide 100 by the answer you get (195). You'll get 0.512820513 and multiply it by .55 (atm of Oxygen) and you'll get 28.2
<h3>
Answer:</h3>
1.93 g
<h3>
Explanation:</h3>
<u>We are given;</u>
The chemical equation;
2C₂H₆(g) + 7O₂(g) → 4CO₂(g) + 6H₂O(l) ΔH = -3120 kJ
We are required to calculate the mass of ethane that would produce 100 kJ of heat.
- 2 moles of ethane burns to produce 3120 Kilo joules of heat
Number of moles that will produce 100 kJ will be;
= (2 × 100 kJ) ÷ 3120 kJ)
= 0.0641 moles
- But, molar mass of ethane is 30.07 g/mol
Therefore;
Mass of ethane = 0.0641 moles × 30.07 g/mol
= 1.927 g
= 1.93 g
Thus, the mass of ethane that would produce 100 kJ of heat is 1.93 g
Answer:
rain is water in molten state
hails are water in solid form.
hope it helps
Plz mark me as brainleist if helps
Have a great day ahead
Answer : The value of reaction quotient, Q is 0.0625.
Solution : Given,
Concentration of
= 2.00 M
Concentration of
= 2.00 M
Concentration of
= 1.00 M
Reaction quotient : It is defined as a concentration of a chemical species involved in the chemical reaction.
The balanced equilibrium reaction is,
![N_2+3H_2\rightleftharpoons 2NH_3](https://tex.z-dn.net/?f=N_2%2B3H_2%5Crightleftharpoons%202NH_3)
The expression of reaction quotient for this reaction is,
![Q=\frac{[Product]^p}{[Reactant]^r}\\Q=\frac{[NH_3]^2}{[N_2]^1[H_2]^3}](https://tex.z-dn.net/?f=Q%3D%5Cfrac%7B%5BProduct%5D%5Ep%7D%7B%5BReactant%5D%5Er%7D%5C%5CQ%3D%5Cfrac%7B%5BNH_3%5D%5E2%7D%7B%5BN_2%5D%5E1%5BH_2%5D%5E3%7D)
Now put all the given values in this expression, we get
![Q=\frac{(1.00)^2}{(2.00)^1(2.00)^3}=0.0625](https://tex.z-dn.net/?f=Q%3D%5Cfrac%7B%281.00%29%5E2%7D%7B%282.00%29%5E1%282.00%29%5E3%7D%3D0.0625)
Therefore, the value of reaction quotient, Q is 0.0625.