is the intensity of the sound.
Answer: Option B
<u>Explanation:</u>
The range of sound intensity that people can recognize is so large (including 13 magnitude levels). The intensity of the weakest audible noise is called the hearing threshold. (intensity about
). Because it is difficult to imagine numbers in such a large range, it is advisable to use a scale from 0 to 100.
This is the goal of the decibel scale (dB). Because logarithm has the property of recording a large number and returning a small number, the dB scale is based on a logarithmic scale. The scale is defined so that the hearing threshold has intensity level of sound as 0.

Where,
I = Intensity of the sound produced
= Standard Intensity of sound of 60 decibels = 
So for 19 decibels, determine I as follows,



When log goes to other side, express in 10 to the power of that side value,


Clever problem.
We know that the beat frequency is the DIFFERENCE between the frequencies of the two tuning forks. So if Fork-A is 256 Hz and the beat is 6 Hz, then Fork-B has to be EITHER 250 Hz OR 262 Hz. But which one is it ?
Well, loading Fork-B with wax increases its mass and makes it vibrate SLOWER, and when that happens, the beat drops to 5 Hz. That means that when Fork-B slowed down, its frequency got CLOSER to the frequency of Fork-A ... their DIFFERENCE dropped from 6 Hz to 5 Hz.
If slowing down Fork-B pushed it CLOSER to the frequency of Fork-A, then its natural frequency must be ABOVE Fork-A.
The natural frequency of Fork-B, after it gets cleaned up and returns to its normal condition, is 262 Hz. While it was loaded with wax, it was 261 Hz.