Answer: Rock require larger drag force and to achieve it rock need to move at a very high terminal velocity.
Explanation: Terminal velocity is defined as the final velocity attained by an object falling under the gravity. At this moment weight is balanced by the air resistance or drag force and body falls with zero acceleration i.e. with a constant velocity.
Case 1: Terminal velocity of a piece of tissue paper.
The weight of tissue paper is very less and it experiences an air resistance while falling downward under the effect of gravity.
Downward gravitational force, F = mg
Upward air resistance or friction or drag force will be
So, paper will attain terminal velocity when mg =
Case 2: Rock is very heavy and require larger air resistance to balance the weight of rock relative to the tissue paper case.
Downward force on rock, F = Mg
Drag force =
Rock will attain terminal velocity when Mg =
Mg > mg
so, >
And rock require larger drag force and to achieve it rock need to move at a very high terminal velocity.
here since string is attached with a mass of 2 kg
so here tension force in the rope is given as
here we will have
now we will have speed of wave given as
here we will have
now we know that frequency is given as
F = 100 Hz
now wavelength is given as
so wavelength will be 0.16 m
Answer:
how much space it takes up in the world
Explanation:
1) Mass is a measurement of the amount of matter something contains, while Weight is the measurement of the pull of gravity on an object. 2) Mass is measured by using a balance comparing a known amount of matter to an unknown amount of matter. Weight is measured on a scale.