Answer:
work output is always less than work input - the ratio is less than 1.
Explanation:
This principle comes from the fact that a machine or system cannot produce more work than is supplied to it, because this would violate the energy conservation law (work is a type of mechanical energy).
In theoretical machines called "ideal machines" the input work is the same as the output work, but these machines are only theoretical because in real applications there is always some type of energy loss, either in heat produced by a machine or processes for its operation, for this reason the output work is always less than the input work.
Regarding the ratio work output to work input:

because work input WI is always greater than work output WO.
Answer:
5m/s/s
Explanation:
force = mass x acceleration
50 = 10a
a=5m/s/s
Answer:
Studies show that eating fewer animal-based products could reduce water use since animal production uses more water than crops do. In addition, reducing the amount of food that's lost or wasted at various points in the food supply chain could feed about 1 billion extra people while simultaneously reducing water use.
Answer:
The increase in temperature of the bullet is 351.1 kelvin
Explanation:
First, we should find the kinetic energy of the bullet is:

with m the mass and v the velocity.

Now we know that half of the kinetic energy of the bullet is transformed into internal energy, by second's law of thermodynamics that means heat (Q) to raise bullet temperature (T), so:

To know what the increase in temperature is, we should use specific heat of lead:

The equation that relates specific heat, change in temperature and mass is:

solving for
:


1) D
2) I would say A, but not 100%, its the only one that makes sense tho