Answer:
![[Ag^{+}]=4.2\times 10^{-2}M](https://tex.z-dn.net/?f=%5BAg%5E%7B%2B%7D%5D%3D4.2%5Ctimes%2010%5E%7B-2%7DM)
Explanation:
Given:
[AgNO3] = 0.20 M
Ba(NO3)2 = 0.20 M
[K2CrO4] = 0.10 M
Ksp of Ag2CrO4 = 1.1 x 10^-12
Ksp of BaCrO4 = 1.1 x 10^-10

![Ksp=[Ba^{2+}][CrO_{4}^{2-}]](https://tex.z-dn.net/?f=Ksp%3D%5BBa%5E%7B2%2B%7D%5D%5BCrO_%7B4%7D%5E%7B2-%7D%5D)
![1.2\times 10^{-10}=(0.20)[CrO_{4}^{2-}]](https://tex.z-dn.net/?f=1.2%5Ctimes%2010%5E%7B-10%7D%3D%280.20%29%5BCrO_%7B4%7D%5E%7B2-%7D%5D)
![[CrO_{4}^{2-}]=\frac{1.2\times 10^{-10}}{(0.20)}= 6.0\times 10^{-10}](https://tex.z-dn.net/?f=%5BCrO_%7B4%7D%5E%7B2-%7D%5D%3D%5Cfrac%7B1.2%5Ctimes%2010%5E%7B-10%7D%7D%7B%280.20%29%7D%3D%206.0%5Ctimes%2010%5E%7B-10%7D)
Now,

![Ksp=[Ag^{+}]^{2}[CrO_{4}^{2-}]](https://tex.z-dn.net/?f=Ksp%3D%5BAg%5E%7B%2B%7D%5D%5E%7B2%7D%5BCrO_%7B4%7D%5E%7B2-%7D%5D)
![1.1\times 10^{-12}=[Ag^{+}]^{2}](6.0\times 10^{-10})](https://tex.z-dn.net/?f=1.1%5Ctimes%2010%5E%7B-12%7D%3D%5BAg%5E%7B%2B%7D%5D%5E%7B2%7D%5D%286.0%5Ctimes%2010%5E%7B-10%7D%29)
![[Ag^{+}]^{2}]=\frac{1.1\times 10^{-12}}{(6.0\times 10^{-10})}= 1.8\times 10^{-3}](https://tex.z-dn.net/?f=%5BAg%5E%7B%2B%7D%5D%5E%7B2%7D%5D%3D%5Cfrac%7B1.1%5Ctimes%2010%5E%7B-12%7D%7D%7B%286.0%5Ctimes%2010%5E%7B-10%7D%29%7D%3D%201.8%5Ctimes%2010%5E%7B-3%7D)
![[Ag^{+}]=\sqrt{1.8\times 10^{-3}}=4.2\times 10^{-2}M](https://tex.z-dn.net/?f=%5BAg%5E%7B%2B%7D%5D%3D%5Csqrt%7B1.8%5Ctimes%2010%5E%7B-3%7D%7D%3D4.2%5Ctimes%2010%5E%7B-2%7DM)
So, BaCrO4 will start precipitating when [Ag+] is 4.2 x 1.2^-2 M
Answer:
There is 54.29 % sample left after 12.6 days
Explanation:
Step 1: Data given
Half life time = 14.3 days
Time left = 12.6 days
Suppose the original amount is 100.00 grams
Step 2: Calculate the percentage left
X = 100 / 2^n
⇒ with X = The amount of sample after 12.6 days
⇒ with n = (time passed / half-life time) = (12.6/14.3)
X = 100 / 2^(12.6/14.3)
X = 54.29
There is 54.29 % sample left after 12.6 days
Pressure has little effect on the solubility of liquids and solids because they are almost incompressible True.
Liquids and solids show little change in solubility with changes in pressure. As expected, gases increase in solubility with increasing pressure. Henry's Law states that the solubility of a gas in a liquid is directly proportional to the pressure of that gas above the surface of the solution.
External pressure has little effect on liquid and solid solubility. In contrast, the solubility of a gas increases as the partial pressure of the gas above the solution increases.
Solubility is a measure of the concentration of dissolved gas particles in a liquid and is a function of gas pressure. Increasing the gas pressure increases the number of collisions and increases the solubility, and decreasing the pressure decreases the solubility.
Learn more about pressure here : brainly.com/question/28012687
#SPJ4
Answer:
The energy levels in an atom are similar to the rungs of a ladder, but they get closer together as they get farther from the nucleus. For an electron to move from one energy level to the next higher level, it must gain the right amount of energy. If less than that amount is available, the electron stays where it is.
Explanation:
Hope this helped! Goodluck on your test or whatever you're doing! Stay safe ♥♥♥
Answer:
One triple bond and four non bonding electrons
Explanation:
In considering the lewis structure of carbon monoxide, we must remember that the molecule contains a total of ten valence electrons. Four are the valence electrons that are present on the valence shell of carbon while six are the valence electrons on oxygen. Some of these valence electrons participate in bonding in the CO molecule.
Out of the six valence electrons on oxygen, two valence electrons participate in bonding with carbon while the other four electrons remain localized on the oxygen atom as two lone pairs of electrons.
Hence there are four nonbonding electrons in the lewis structure of CO as well as one triple bond.